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Given a synchronous system, we study the question whether—or, under which

conditions—the behaviour of that system can be realised by a (non-trivially) distributed

and hence asynchronous implementation. In this paper we partially answer this question

by examining the role of causality for the implementation of synchrony in two

fundamental different formalisms of concurrency, Petri nets and the π-calculus. For both

formalisms it turns out that each “good” encoding of synchronous interactions using just

asynchronous interactions introduces causal dependencies in the translation.
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1. Introduction

Synchronous and asynchronous interactions are the two basic paradigms of interactions

in distributed systems. While synchronous interactions are widely used in specification

languages, asynchronous interactions are often better suited to implement real systems. It

would be desirable—from a programming standpoint—to design systems in a synchronous

fashion, yet reap the benefits of parallelism by means of an (ideally automatically gener-

ated) implementation executed on multiple processing units in parallel, between which

only asynchronous communication is possible. Thus, we are interested in the conditions

under which synchronous interactions can be implemented using just asynchronous inter-

actions, while maximising the degree of distribution. To partially answer this question,

we examine the role of causality for encoding synchrony. We formalise and study this

problem by means of Petri nets (see Section 2) as well as the π-calculus (see Section 3),

as synchronous and asynchronous interactions have already been studied in both models

to quite some extent.

Petri nets and the π-calculus are two fundamentally different models for reactive sys-

tems. However, certain basic phenomena show up in both in at least similar ways. Three

† This work was supported by the DFG (German Research Foundation), grants NE-1505/2-1 and GO-
671/6-1.
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of them play a crucial role for our investigation. A reactive system exhibits its behaviour

by executing various actions. Studying the possible behaviour of a system, two action

occurrences must be related in one of three ways: There can either be a choice between

the two, one of the two can be causally dependent on the other, or the two can be entirely

independent.

Choice. If there is a choice between two behaviours, the system can only exhibit one. If

multiple copies of the same system would be started though, they could each choose a

different alternative.

In Petri nets, choice is represented by conflict, i.e. by two transitions sharing a common

preplace and competing for tokens such that each transition can fire separately but not

both at the same time. The processing of conflicts in Petri nets is inherently synchronous,

in particular multiple conflicts transitively connecting an arbitrary number of transitions

will always be decided consistently.

In the π-calculus, choice can be implemented directly via the choice operator or indi-

rectly by offering multiple matching outputs for a single input or vice versa. The choice

operator also allows for choices between actions on different channel names. In the lit-

erature, different kinds of the choice operator are distinguished depending on what kind

of processes are allowed to be combined within a choice. We restrict our attention to

guarded choice, i.e. to choice constructs where each summand is guarded by an in- or

output prefix.

When processes communicate via message-passing along channels, they do not only

listen to one channel at a time—usually, they concurrently listen to a whole selection of

channels. Choice operators make this natural intuition explicit; moreover, their mutual

exclusion property allows us to concisely describe the particular effect of message-passing

actions on the process’s local state. Asynchronous send actions make no sense as part of a

mutually exclusive selection, as they cannot be prevented from happening. Consequently,

the asynchronous calculus only offers input-guarded choice. In contrast, synchronous send

actions also allow for the definition of mixed choice: selections of both input and output

actions. Because of that, it makes sense to assume a synchronous calculus with the

ability of mixed choice, while in its asynchronous variant at most input guarded choice

is naturally given.

Causality. The second basic concept, which is particularly considered in Petri nets, is

the notion of causal dependence. A transition occurrence in a Petri net or a step† of a

process in a process calculus is causally dependent on another one when the first one must

necessarily have happened in order to enable the second one. In Petri nets, this notion

may be clearly defined using occurrence nets (acyclic nets with only forward branched

places) as behavioural representations of the system. Unfortunately, the π-calculus does

not provide such a natural causal semantics for its terms. There are however a number

of approaches that define causal dependencies, mostly between the actions of π-terms.

† Note that, in Petri nets and process calculi, the notion of steps denotes different concepts.
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Figure 1. A fully reached, pure M, the core problematic structure.

Independence. The third basic notion may then be derived for Petri nets: If two transition

occurrences are neither in conflict nor causally dependent then they are independent, or

concurrent. On the system level, we may express independence of transition occurrences

by defining a notion of step, describing that several transitions may happen together in

parallel.

We will avoid the term “parallel” in this paper, as the π-calculus features a parallel

composition operator, whose standard intuition negatively interferes with the concept of

independence: parallel terms need not be independent.

Example 1.1. Consider P = a | a.0 + b.1 and Q = b | a.1 + b.0. Then the processes

P and Q in the network (ν a, b) (P | Q) do not decide independently to emit 0 or 1, but

synchronise in order to take that decision.

Overview of the Paper. In the following, we consider the two formalisms separately. First,

we derive a separation result for Petri nets in §2. Then, we derive a similar separation

result for the π-calculus in §3. In §4, we discuss how these two separation results are

related.

2. Synchrony vs. Causality in Petri Nets

Petri nets have been introduced as a graphical notation to describe and analyse dis-

tributed systems and their behaviour. They are particularly apt at representing dis-

tributed state in an intuitive way. When studying distributed implementability in terms

of Petri nets we use a semi-structural requirement on Petri nets to represent distribu-

tion: As observed in Schicke (2008), consistent outcomes of a choice cannot be assured

across different locations, hence each choice must ultimately be decided synchronously

and hence on a single location.‡ Hence, if two actions reside on different locations, they

must never be in conflict.

However, even where choice exists, a higher degree of distribution can be achieved by

introducing some protocol between different locations. In that case, a decision is made

before the two conflicting behaviours are executed, thereby separating the synchronous

resolution of choice from the distributed performance of the behaviour. To ensure that the

‡ Quantum entanglement would make a distributed yet consistent choice possible though, enabling us
to build systems with a higher degree of distribution.
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protocol used does not introduce incorrect system behaviour, we use equivalence relations

on Petri net behaviours to decide whether a candidate implementation is indeed faithful

to the synchronous specification.

Many equivalence relations for system behaviour have already been proposed. When

comparing the strictness of these equivalences, as done by Glabbeek (1993) or Glabbeek

& Goltz (2001), and exploring the resulting lattice, one finds multiple “dimensions” of

features along which such an equivalence may be more or less discriminating. The most

prominent one is the linear-time branching-time axis, denoting how well the decision

structure of a system is captured by the equivalence. Another dimension relevant for

this paper is that along which the detail of the causal structure increases. On the first

of these two dimensions, we would at the very least like to detect deadlocks introduced

by the implementation, on the second one, at least a reduction in concurrency due to

the implementation. As every (non-trivial) implementation will introduce internal τ -

transitions, a suitable equivalence must abstract from them, as long as they do not allow

a divergence.

Glabbeek, Goltz & Schicke (2008) answers part of the question of distributed imple-

mentability for a certain equivalence of this spectrum, namely step readiness equivalence.

Step readiness equivalence is one of the weakest equivalences that respects branching

time, concurrency and divergence to some degree but abstracts from internal actions. For

this equivalence we derived an exact characterisation of asynchronously implementable

(distributable) Petri nets. The main difficulty in implementing arbitrary Petri nets up

to step readiness equivalence is a structure called pure M, depicted in Figure 1, where

two parallel transitions are in pairwise conflict with a common third. By Glabbeek et al.

(2008) a synchronous net is distributable only if it contains no fully reachable pure M,

by Glabbeek, Goltz & Schicke-Uffmann (2012) this characterisation is exact, i.e. a net is

distributable iff it contains no fully reachable pure M.

Using the strictly weaker completed step trace equivalence, Schicke (2009) proved

any synchronous net to be distributable. Comparing these two results and the given

implementation in the latter we made a very interesting observation: We were unable to

find an implementation of a synchronous net with a fully reachable pure M which did

not introduce additional causal dependencies.

A main contribution of the present paper is to show that this drawback holds for any

sensible encoding of synchronous interactions, i.e. it is a general phenomenon of encoding

synchrony in case of Petri nets. We reach that result by extending the pure M of Figure 1

into a repeated pure M, depicted in Figure 2. We thereby get a separation result similar

to Glabbeek et al. (2008) along a different, namely the causal, dimension of the spectrum

of behavioural equivalences.

Overview. After introducing the standard notions of Petri nets and formally defining

distributed nets, we introduce completed pomset trace equivalence to detect newly intro-

duced causalities in the implementation. Using the concrete example of Figure 2 we then

show that for a certain substructure of Petri nets no completed pomset trace equivalent,

yet distributed implementation exists.
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Figure 2. A repeated pure M. A finite, 1-safe, undistributable net used as a running

counterexample in case of Petri nets.

2.1. Technical Preliminaries

Most material in this section has been taken verbatim or with minimal adaptation from

Glabbeek et al. (2008) or Schicke (2009).

Where dealing with tuples, we use pr1, pr2, . . . as the projection functions returning the

first, second, . . . element respectively. We extend these functions to sets element-wise.

Definition 2.1 (Labelled net). Let Act be a set of visible actions and τ 6∈ Act be an

invisible action. A labelled net (over Act) is a tuple N = (S, T, F,M0, ℓ) where

— S is a set (of places),

— T is a set (of transitions),

— F ⊆ S × T ∪ T × S (the flow relation),

— M0 ⊆ S (the initial marking) and

— ℓ : T → Act ∪ {τ} (the labelling function).

A net is called finite iff S and T are finite.

Petri nets are depicted by drawing the places as circles, the transitions as boxes containing

the respective label, and the flow relation as arrows (arcs) between them. When a Petri

net represents a concurrent system, a global state of such a system is given as a marking,

a set of places, the initial state being M0. A marking is depicted by placing a dot (token)

in each of its places. The dynamic behaviour of the represented system is defined by

describing the possible moves between markings. A markingM may evolve into a marking

M ′ when a nonempty set of transitions G fires. In that case, for each arc (s, t) ∈ F leading

to a transition t in G, a token moves along that arc from s to t. Naturally, this can happen

only if all these tokens are available in M in the first place. These tokens are consumed

by the firing, but also new tokens are created, namely one for every outgoing arc of a

transition in G. These end up in the places at the end of those arcs. A problem occurs

when as a result of firing G multiple tokens end up in the same place. In that case M ′

would not be a marking as defined above. In this paper we restrict attention to nets in

which this never happens. Such nets are called 1-safe. Unfortunately, in order to formally

define this class of nets, we first need to correctly define the firing rule without assuming

1-safety. Below we do this by forbidding the firing of sets of transitions when this might

put multiple tokens in the same place. As 1-safety is assumed later, this explicit forbidding

will never have any effect.

To help track causality throughout the evolution of a net, we extend the usual notion
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of marking to dependency marking. Within these dependency markings, every token is

augmented with the labels of all transitions having causally contributed to its existence.

The other basic Petri net notions presented here have been extended in the same manner.

While it might seem more natural to annotate the causal history of the tokens by a partial

order, we only use a set here in order to keep the number of reachable markings finite

for finite nets (a property a later proof will utilise).

We denote the preset and postset of a net element x ∈ S ∪ T by •x := {y | (y, x) ∈ F}

and x• := {y | (x, y) ∈ F} respectively. These functions are extended to sets in the usual

manner, i.e. •X := {y | y ∈ •x, x ∈X}.

Definition 2.2 (Steps). Let N = (S, T, F,M0, ℓ) be a net. Let M1,M2 ⊆ S × P(Act).

G ⊆ T,G 6= ∅, is called a dependency step from M1 to M2, M1[G〉NM2, iff

— all transitions contained in G are enabled, i.e.

∀t ∈ G.•t ⊆ pr1(M1) ∧ (pr1(M1) \
•t) ∩ t• = ∅ ,

— all transitions of G are independent, that is not conflicting:

∀t, u ∈ G, t 6= u.•t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

— causalities are extended by the labels of the firing transitions:

M2 = {p ∈ M1 | pr1(p) 6∈
•G}∪









s, ({ℓ(t)} \ {τ}) ∪
⋃

p∈M1∧pr
1
(p)∈•t
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∣
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Applying pr1 to a dependency marking results in the classical Petri net notion of marking

and similar for the other notions introduced in this section. Note that the enrichment

of markings into dependency markings has no impact on the existence of steps, since

it neither influences the enabling of transitions nor their independence. We will mainly

employ the versions defined here and drop the qualifier “dependency” most of the time.

A token (s, P ) ∈ M is Q-dependent iff Q ⊆ P and Q-independent iff P ∩Q = ∅.

To simplify the following argumentation we use some abbreviations.

Definition 2.3. Let N = (S, T, F,M0, ℓ) be a labelled net.

We extend the labelling function ℓ to (multi)sets element-wise.

−→N ⊆ P(S × P(Act))× NAct × P(S × P(Act)) is given by

M1
A

−→N M2 ⇔ ∃G ⊆ T.M1 [G〉N M2 ∧ A = ℓ(G)
τ

−→N ⊆ P(S × P(Act))× P(S × P(Act)) is defined by

M1
τ

−→N M2 ⇔ ∃t ∈ T.ℓ(t) = τ ∧M1 [{t}〉N M2

=⇒N ⊆ P(S × P(Act))×Act∗ × P(S × P(Act)) is defined by

M1
a1a2···an======⇒N M2 ⇔ M1

τ
−→

∗

N

{a1}
−→N

τ
−→

∗

N

{a2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N

{an}
−→N

τ
−→

∗

N M2

where
τ

−→
∗

N denotes the reflexive and transitive closure of
τ

−→N .

We omit the subscript N if clear from context.

We write M1
A

−→N for ∃M2.M1
A

−→N M2, M1 X
A
−→N for ∄M2.M1

A
−→N M2, and similar



Synchrony vs Causality in Distributed Systems 7

for the other two relations. Likewise the term M1[G〉N abbreviates ∃M2.M1[G〉NM2. A

marking M1 is said to be reachable iff there is a sequence of labels σ ∈ Act∗ such that

M0 × {∅}
σ

=⇒N M1. The set of all reachable markings is denoted by [M0〉N .

As said before, here we only want to consider 1-safe nets. Formally, we restrict ourselves

to contact-free nets, where in every reachable marking M1 ∈ [M0〉 for all t ∈ T with
•t ⊆ pr1(M1)

(pr1(M1) \
•t) ∩ t• = ∅ .

For such nets, in Definition 2.2 we can just as well consider a transition t to be enabled

in M iff •t ⊆ pr1(M), and two transitions to be independent when •t ∩ •u = ∅.

The later proof that Figure 2 is non-implementable depends crucially on this 1-safety

assumption. We conjecture however, that the result itself will hold, even if non-safe

implementations will be allowed.

2.2. Asynchronous Petri Nets

Petri nets are inherently synchronous and we have to use some additional requirements

to define asynchronous Petri nets. As already mentioned in the Introduction (§1) the

synchronous nature of Petri nets mainly manifests in the processing of conflicts.

Example 2.4. Consider the fully reached, pure M already given in Figure 1:

a b c

Here, the transitions a and c can independently be performed in a single step. However,

if b fires, then both a and c are disabled. To ensure this behaviour b has to consume both

tokens simultaneously, i.e. there is no intermediate state of the system in which only one

token is removed.

As explained by Glabbeek et al. (2008) we can define asynchronous Petri nets by

restricting the existence of such conflicts. Of course, we do not want to forbid all kind of

conflicts, but only those that cannot be implemented asynchronously. To do so, we assign

to each net element a location, place sensible restrictions on arrows crossing location

borders, and restrict the sets of net elements being allowed to reside on the same location.

We regard locations as sequential computation units of the underlying system, each

one able to execute at most one action during each step. This necessitates that no pair

of transitions firing in the same step can reside on the same location. Additionally, if

locations are indeed physically apart as their name suggests, communication between

them can only proceed asynchronously.

We discussed a very similar notion of distribution in (Glabbeek et al. 2008), whence

the following description and definition of the present version have been derived. The
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central insight from that paper is that the synchronous removal of tokens from preplaces

of a transition is essential to the conflict resolution taking place between multiple enabled

transitions and that hence transitions must reside on the same location as their preplaces.

So, to achieve asynchrony, we basically require that, for each transition t, t and all of its

preplaces, •t, have to placed on the same location. Thus, only outgoing arcs of transitions

can cross location borders. That meets our intuition that in an asynchronous setting the

consumption of a token takes time, while in the production of tokens a delay cannot have

any effect. Since locations are considered as sequential computation units, conflicts within

a location are not critical under the assumption of asynchronous interactions between

locations. By placing the preplaces of a transition at the same location as the transition

itself, we rule out any potential conflict between transitions on different locations.

We model the association of locations to the places and transitions in a net N =

(S, T, F,M0, ℓ) as a function D : S ∪ T → Loc, with Loc a set of possible locations.

We refer to such a function as a distribution of N . Since the identity of the locations is

irrelevant for our purposes, we can just as well abstract from Loc and represent D by

the equivalence relation ≡D on S ∪ T given by x ≡D y iff D(x) = D(y).

Definition 2.5 (Distributed Net). Let N = (S, T, F,M0, ℓ) be a net. The concurrency

relation ⌣⊆T 2 is given by t⌣u ⇔ t 6= u ∧ ∃M ∈ [M0〉.M [{t,u}〉. N is distributed iff it

has a distribution D such that

— ∀s ∈ S, t ∈ T.s ∈ •t =⇒ t ≡D s,

— t ⌣ u =⇒ t 6≡D u.

It is easy to see, that the fully reached, pure M of Figure 1 is not distributed. It is

straightforward to give a semi-structural§ characterisation of this class of nets:

Observation 2.6. A net is distributed iff there is no sequence t0, . . . , tn of transitions

with t0 ⌣ tn and •ti−1 ∩
•ti 6= ∅ for i = 1, . . . , n.

2.3. Quality of Petri Net Implementations

We consider an implementation of a Petri net N as a variant of N that is achieved by

changing the structure of N and introducing invisible transitions, i.e. transitions labelled

with the action τ . To rule out trivial or meaningless implementations, i.e. to identify

“good” implementations, we compare N and its implementation by an equivalence rela-

tion. In the following, we motivate the properties of this equivalence relation by means

of highlighting some possible shortcomings of implementations one would intuitively like

to avoid.

When trying to implement a synchronous Petri net by a distributed one, one of the

easiest approaches is central serialisation of the entire original net by introduction of a

single new place connected with loops to every transition, thereby vacuously fulfilling the

requirement that no parallel transitions may reside on the same location. This clearly

loses parallelism. We illustrate in Figure 3 the result of applying a slightly more intricate

§ mainly structural, but with a reachability side-condition
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Figure 3. A centralised implementation of the net in 2, location borders dotted.

a b c

τ τ

Figure 4. A locally deadlocking implementation of Figure 2, location borders dotted.

variant of this scheme, where every visible step of the original still exists in the imple-

mentation, to the repeated pure M. Nonetheless, this approach is intuitively not scalable

and highly inefficient, as all decisions made concurrently in the original net are now made

in sequence. In particular, the parts of the net firing a were completely independent of

those parts firing c in the specification, while being connected trough the central place in

the implementation. Such new dependencies can be detected if the causal dependencies

between events are included in the behavioural description of a net. Apart from the obvi-

ous implications for scalability, if a Petri net is used as an abstract description of a more

concrete system, a new dependency might enable interactions between different parts of

the system the designer did not take into account. Hence we would like to disallow such

a strategy by means of the equivalence between specification and implementation.

No such causalities are introduced by the implementation in Figure 4. There however,

one of the cycles of a’s or c’s may spontaneously decide to commit to the b action and wait

until the other does likewise, resulting in what is essentially a local deadlock. Compared

to the original net, where a stayed enabled until b was fired, such behaviour is new.

Trying to resolve this deadlock by adding a τ -transition in the reverse direction would

introduce a diverging computation not present in the original net.

All these deviations from the original behaviour can elegantly be captured by the

causal equivalence from (Schicke 2009), called completed pomset trace equivalence. It

extends the pomset trace equivalence of Pratt (1985) as to detect local deadlocks, which

can be regarded as unjust computations in the sense of Reisig (1984). This equivalence

is presented in Section 2.4.
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In addition we require that the implementation of a finite Petri net is again finite.

2.4. Completed Pomset Trace Equivalence

Pomset trace equivalence is obtained by unrolling a Petri net into a process as defined by

Petri (1977). Such a process can be understood to be an account of one particular way

to decide all conflicts which occurred while proceeding from one marking to the next.

The behaviour of the net is hence a set of these processes, covering all possible ways to

decide conflicts.

Unrolling a net N intuitively proceeds as follows: The initially marked places of N are

copied into a new net N and their correspondence to the original places recorded in a

mapping π. Then, whenever in N a transition t is fired, this is replayed in N by a new

transition connected to places corresponding by π to the original preplaces of t and which

are not yet connected to any other post-transition. A new place of N is created for every

token produced by t. Again all correspondences are recorded in π. Every place of N has

thus at most one post-transition. If it has none, this place represents a token currently

being placed on the corresponding original place.

As a shorthand notation to gather these places, we introduce the end of a net.

Definition 2.7 (End of a Net). Let N = (S, T, F,M0, ℓ) be a labelled net. The end

of the net is defined as N◦ := {s ∈ S | s• = ∅}.

Definition 2.8 (Process).

A pair P= (N, π) is a process of a net N = (S, T, F,M0, ℓ) iff

— N = (S ,T,F,M0, �l) is a net, satisfying

– ∀s ∈ S .|•s| ≤1≥ |s•| ∧ s ∈M0 ⇔ •s = ∅

– F is acyclic, i.e. ∀x ∈ S ∪ T.(x, x) 6∈ F+, where F+ is the transitive closure of F,

– and {t | (t, u) ∈ F

+} is finite for all u ∈ T.

— π : S ∪ T→ S ∪ T is a function with π(S) ⊆ S and π(T) ⊆ T , satisfying

– s ∈ M0 ⇔ |π−1(s) ∩M0| = 1 for all s ∈ S,

– π is injective on M0,

– ∀t ∈ T, s ∈ S. sFπ(t) ⇔ π−1(s) ∩ •t 6= ∅ ∧ π(t)Fs ⇔ π−1(s) ∩ t• 6= ∅, and

– ∀t ∈ T.�l(t) = ℓ(π(t)).¶

P is called finite if N is finite.

P is maximal iff π(N◦) X−→N . The set of all maximal processes of a net N is denoted

by MP (N).

To disambiguate between a not-yet-occurred firing of a transition a and the impossibility

of firing an a, we restrict the set of processes relevant for the behavioural description to

¶ While ℓ and �llook nearly identical, the authors see no problem in that, given the close correspondence.
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maximal processes. We thereby obtain a just semantics in the sense of Reisig (1984) ‖,

i.e. a transition which remained enabled infinitely long must ultimately fire.

To abstract from the τ -actions introduced in an implementation, we extract from the

maximal processes the causal structure between the fired visible events in the form of

a partially ordered multiset (pomset). Formally, a pomset is an isomorphism class of a

partially ordered multiset of action labels.

Definition 2.9 (Labelled Partial Order). A labelled partial order is a structure

(V, T,≤, l) where

— V is a set (of vertices),

— T is a set (of labels),

— ≤ ⊆ V × V is a partial order relation and

— l : V → T (the labelling function).

Two labelled partial orders o = (V, T,≤, l) and o′ = (V ′, T,≤′, l′) are isomorphic,

o ≅ o′, iff there exists a bijection ϕ : V → V ′ such that

— ∀v ∈ V.l(v) = l′(ϕ(v)) and

— ∀u, v ∈ V.u ≤ v ⇔ ϕ(u) ≤′ ϕ(v).

Definition 2.10 (Pomset). Let o = (V, T,≤, l) be a partial order. The pomset of o is

its isomorphism class [o] := {o′ | o ≅ o′}.

By hiding the unobservable transitions of a process, we gain a pomset which describes

causality relations of all participating visible transitions.

Definition 2.11 (Pomset of Maximal Processes). Let P= ((S ,T,F,M0, �l), π) be a

process. Let O := {t ∈ T | �l(t) 6= τ}, i.e. the visible transitions of the process. The visible

pomset of P is the pomset V P (P) := [(O,Act,F∗ ∩O×O, �l∩ (O×Act))] where F∗ is the

transitive and reflexive closure of the flow relation F.

MVP(N) := {V P (P) | P ∈ MP (N)} is the set of visible pomsets of all maximal

processes of N .

Using this notion we can now define completed pomset trace equivalence.

Definition 2.12 (Completed Pomset Trace Equivalence). Two nets N and N ′ are

completed pomset trace equivalent, N ≃CPT N ′, iff MVP(N) = MVP(N ′).

2.5. Implementing Synchronous Petri Nets

In the following, we show that it is in general impossible to distribute 1-safe nets while

preserving finiteness of nets and ensuring that the source and the target nets are com-

pleted pomset trace equivalent. In particular we give a counterexample and prove that

no finite distributed implementation of it can exist.

An infinite implementation always exists, as completed pomset trace equivalence is a

very linear-time equivalence, and disregards the decision structure of a system. Hence

‖ or in modern terms, a “weakly fair” semantics
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Figure 5. An infinite implementation of Figure 2, constructed by taking every maximal

process and initially choosing one, location borders dotted.

an implementation like the one of Figure 5, which simply provides a separate branch for

each possible maximal process of the original net, would be distributed and completed

pomset trace equivalent. In practice though, such an infinite implementation is unwieldy

to say the least. If however infinite implementations are ruled out, our main result shows

that no valid implementation of the repeated pure M of Figure 2 exists.

Before we consider this main theorem of the paper, let us concentrate on two aux-

iliary lemmata. The first states that the careful introduction of a τ -transition before

an arbitrary transition of a net, as described below, does not significantly influence the

properties of that net.

Lemma 2.13. Let N = (S, T, F,M0, ℓ) be a finite, 1-safe, distributed net with the

distribution function D. Let t ∈ T . The net N ′ = (S′, T ′, F ′,M0, ℓ
′) with

— S′ = S ∪ {st},

— T ′ = T ∪ {τt},

— F ′ = (F \ (S × {t})) ∪ {(s, τt) | s ∈ •t} ∪ {(τt, st), (st, t)}, and

— ℓ′(x) =

{

τ if x = τt

ℓ(x) otherwise

is finite, 1-safe, distributed and completed pomset trace equivalent to N .

Proof. (Sketch)

N ′ is finite as only two new elements were introduced.

N ′ is completed pomset trace equivalent to N . Given a process (N, π) of N , a process

of N ′ can be constructed by refining in N every transition u in the same manner as

π(u) was in N . For the reverse direction, note that in every maximal processes of N ′,

π(u) = t =⇒ π(•u) = {st} ∧ π(•st) = {τt}. By fusing u, •u, and ••u into a single

transition v whenever π(u) = t and setting the process mapping of v to t, a maximal

process of N ′ can be transformed into a maximal process of N .

For the same reason, N ′ is also 1-safe.
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N ′ is distributed with the distribution function:

D′(x) :=

{

D(t) if x = st ∨ x = τt

D(x) otherwise

The places in •τt are on D(t) = D′(τt). D
′(st) = D(t) = D′(t). Hence all transitions are

on the same location as their preplaces. No new parallelism is introduced, as a parallel

firing of either τt or t with some other transition u can only occur if t and u could already

fire in parallel in N .

Next we show that if a marking is reached twice during a computation, the dependencies

of all tokens consumed and produced by a transition firing in such a cycle are equal.

Lemma 2.14. Let N = (S, T, F,M0, ℓ) be a finite, 1-safe net. Let ts, ts+1, . . . , te−1, te ∈

T be a sequence of transitions leading from a reachable marking Mbase to the same, i.e.

Mbase
{ts}−−→ · · ·

{te}−−→ Mbase. Then every ti produced tokens that were dependent on the

same labels as the tokens on its preplaces.

Proof. Assume the opposite, i.e. there is a ti for s ≤ i ≤ e such that ti consumed an

L-independent token from one of its preplaces (for some L ⊆ Act), but produced no L-

independent tokens. This L-independent token needs to be replaced to again reachMbase.

However the replacement token needs to be L-independent as otherwise a dependency

marking different from Mbase would be reached. This token can thus not depend on any

of the tokens produced by ti, as it would then not be L-independent. In other words, had

ti not fired, a new L-independent token could also have been produced on its preplaces,

i.e. N would not be 1-safe, violating the assumptions. Hence no such ti can be fired, or

equivalently, every ti produced tokens that were dependent on the same labels as the

tokens on its preplaces (which hence all have the same dependencies).

We will now show that, given an arbitrary finite, 1-safe net, it is not possible in general

to find a finite, 1-safe, and distributed net which is completed pomset trace equivalent

to the original. As a counterexample, consider the repeated pure M of Figure 2. It is a

simple net allowing to perform several transitions of a and c in parallel, and terminating

with a single transition b. The main argument of the following proof proceeds as follows:

To perform an arbitrary number of a- and c-transitions within a finite net there has to

be a loop. To terminate with b the process has to escape from that loop by disabling all

transitions leading to a or c. Therefore either a single token is consumed that is dependent

on a as well as on c, or two different tokens – one a-dependent and one c-dependent –

are consumed. In the first case an additional iteration of the loop results in an additional

causal dependency, i.e. in a causal dependency between a and c. In the second case the

net is not distributed in the sense of Definition 2.5.

Theorem 2.15. It is in general impossible to find for a finite, 1-safe net a distributed,

completed pomset trace equivalent, finite, 1-safe net.

Proof. Via the counterexample given in Figure 2. Suppose a finite, 1-safe, distributed

net Nimpl, which is completed pomset trace equivalent to the net of Figure 2, would
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exist. By refining every b-labelled transition in Nimpl into two transitions in the manner

of Lemma 2.13, a new net N = (S, T, F,M0, ℓ) is derived. By Lemma 2.13 this new net

is finite, 1-safe, distributed and completed pomset trace equivalent to the net in Figure 2

since Nimpl is.

N has |S| places and 3 different visible labels, every place can hold either no token, or a

token dependent on any possible combination of the three labels. Since N is finite so is |S|.

Hence N has at most 9|S| reachable dependency markings. Let m := 9|S|. N is able to fire

(ac)mb without any step containing more than a single transition since the net of Figure 2

is and the two are assumed to be completed pomset trace equivalent. Let G1, G2, . . . Gn

be the steps fired while doing so. |Gi| = 1 for all i. In the course of firing that sequence,

at least one dependency marking is bound to be reached at least twice. Of all those

dependency markings which occur twice or more, we take the one occurring last while

firing (ac)mb and call it Mbase. Let Gs, Gs+1, . . . , Ge−1, Ge be a sequence of steps between

two occurrences of Mbase, i.e. M0 × {∅}
G1−→

G2−→ · · ·Mbase
Gs−→ · · ·

Ge−→ Mbase · · ·
Gn−→.

Using 2.14 the transitions of the steps Gs to Ge can be partitioned into subsets TX

based on the dependencies of the tokens they produced and consumed. A set TX in-

cludes all transitions producing X-dependent, Act \ X-independent tokens. By firing

Gs ∩ T{a}, Gs+1 ∩ T{a}, . . . , Ge ∩ T{a} (skipping empty steps) repeatedly, Mbase
am

=⇒. By

firing Gs ∩T{c}, Gs+1 ∩T{c}, . . . , Ge∩T{c} (skipping empty steps) repeatedly, Mbase
cm

=⇒.

We now search for the marking where the decision to fire b is made.

Assume a reachable marking M ′′ of N with M ′′ am

=⇒. If M ′′ 6
cm

=⇒ this holds for all

M ′′′ reachable from M ′′ since c cannot be enabled using tokens produced by a transition

labelled a or b. Otherwise there would exist a pomsets of N in which a c is causally

dependent on an a or b. Such a pomset however does not exist for the net of Figure 2,

thereby violating the assumption of completed pomset trace equivalence. If however c

is not re-enabled after M ′′, a maximal process including finitely many c but infinitely

many a’s can be produced also leading to a pomset not present in the net of Figure 2.

The same argument can be applied with the rôles of a and c reversed, hence M ′′ am

=⇒ iff

M ′′ cm

=⇒.

We start from Mbase and start to fire the steps Gs, Gs+1, . . . , Gn until am cannot be

fired any more for the first time. This step always exists as after b no further a’s or c’s

may be fired. Call the single transition in that step tb. The marking right before that

transition fired we call M , the one right after it M ′. Not only M
am

=⇒ but also M
cm

=⇒

and not only M ′ 6
am

=⇒ but also M ′ 6
cm

=⇒, as both M and M ′ are reachable markings.

tb is not itself labelled b, as the refined net has a τ -transition before the b, and once

a token resides on the intermediate place, no a-transitions can be fired any more, as

otherwise a pomset where an a which is not a causal predecessor to a b would be produced,

again not existing for the net of Figure 2.

To disable the trace am, the transition tb needed to consume a token. If tb had not

fired, some Gi ∩ T{a}, s ≤ i ≤ e could have consumed that token, hence that token must

be a-dependent, c-independent. Similarly, tb must have consumed a token which could

have led to cm. This token needs to be c-dependent, a-independent. Hence tb has at least

two preplaces, which in turn are also preplaces to two different transitions, call them ta
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and tc, which then lead to am and cm respectively.†† As they have common preplaces,

ta, tb and tc are on the same location.

From M the net can fire am consuming only a-dependent, c-independent tokens. It

can also fire cm consuming only c-dependent, a-independent tokens.

Hence there is a sequence of steps leading from M to a marking where ta is enabled, yet

only a-dependent, c-independent tokens have been removed or added. Similarly there is a

firing sequence leading from M to a marking where tc is enabled, yet only c-dependent, a-

independent tokens have been removed or added. As they change disjunct sets of tokens,

these two firing sequences can be concatenated, thereby leading to a marking where ta
and tc are concurrently enabled, yet they are on the same location, thereby violating the

implementation requirements.

Note that the self-loops of the counterexample are not critical to the success of the

proof. We can in fact generalize the a- and c-transitions to arbitrary transition se-

quences aa0a1 . . . an (none of which labelled c) and cc0c1 . . . cn (none of which labelled

a). The proof goes through when replacing a and c with ℓ(a)ℓ(a0)ℓ(a1) . . . ℓ(an) and

ℓ(c)ℓ(c0)ℓ(c1) . . . ℓ(cn) in all firing sequences and adjusting the number of visible labels.

Unfortunately a characterisation of such critical structures, of which Figure 2 depicts

only an example, in semi-structural terms as done e.g. by Glabbeek et al. (2008) is not

possible here: In the end, the two firing sequences forming the loops then would need to

be identifyable from the semi-structural properties. To ensure that both exist and can

actually be fired independently, there must exist a sufficiently long sequence of reachable

markings where both places loose and receive tokens sufficiently often while never getting

the wrong causalities. This however ceases to be a property of a single marking and should

no longer be considered semi-structural.

This paper only considered 1-safe nets as possible implementations. We conjecture

however, that the proof of Theorem 2.15 can be extended to non-safe implementations

as well, as from a place where tokens of different dependency mix, a transition can

always choose the most-dependent token. In particular a transition intended to produce

independent tokens cannot have such a place as a preplace. Hence every part of the

net providing independent tokens can do so without depending on firings of labelled

transitions. The number of independent tokens produced on a place where a labelled

transition consumes them is thus either finite over every run of the system, or unbounded

even without any labelled transition ever firing. In both cases that place is unsuitable

for disabling a potentially infinitely often occurring loop. If only finitely many tokens

are produced, the loop can no longer happen infinitely often, if an unbounded number of

tokens can be produced, no disabling can be guaranteed.

Comparing the proof of Theorem 2.15 with the proof by Glabbeek et al. (2008), we

observe that the counterexample in both proofs is based on two conflicts overlapping the

same transition, i.e. on what is therein called a fully reachable pureM. In the synchronous

†† The removal of the token leading to a
m and the one leading to c

m must indeed be done by a single
transition tb as only a single transition was fired between M and M

′ and both traces were possible
in M but impossible in M

′.
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setting such an overlapping conflict is solved by the simultaneous removal of tokens on

different places in the preset. In an asynchronous setting these two conflicts have to be

distributed over at least two locations. Intuitively, the problem with such a distribution

is that it prevents the simultaneous solution of the original overlapping conflicts. Instead

these two conflicts have to be solved in some order. This order must, as done within the

encoding presented by Schicke (2009), be enforced by the encoding, leading to additional

causal dependencies.

3. Synchrony vs. Causality in the π-calculus

Similar to the work in the previous section, we show that in the π-calculus it is not

possible to encode synchronous interactions within a completely asynchronous framework

without introducing additional causal dependencies in the translation.

It is debatable how well a discussion on synchrony versus asynchrony can be separated

from a discussion of choice when considering the π-calculus. In fact, even from a prag-

matic point of view within our model of distributed reactive systems, it can not. It is

part of the nature of reactive systems—in our case: systems communicating via message-

passing along channels—that agents do not only listen to one channel at a time; they

concurrently listen to a whole selection of channels. In this respect, as soon as a calculus

offers a synchronous (blocking) input primitive, it is natural to extend this primitive

to an input-guarded choice. Having mutual exclusion on concurrently enabled inputs is

useful when thinking of a process’s local state that may be influenced differently by any

received information along the competing input channels. (Joint input (Nestmann 1998),

as motivated in the join calculus (Fournet & Gonthier 1996), represents another natural

and interesting generalisation.) Likewise, as soon as a calculus offers synchronous output,

one may generalise this primitive to output-guarded choice. This generalisation seems less

natural, though, as the process’s state would hardly be influenced by a continuation of

one of the branches after an output. However, having both input- and output-guards in

the calculus, mixed choice becomes expressible. Mixed choice is again also natural, as the

successful execution of an output may prevent a competing input, including the effect of

the latter on the local state. These pragmatic arguments support the point of view that,

in a message-passing scenario, any discussion of synchronous versus asynchronous inter-

action must consider a competitive context, as expressed by means of choice operators.

We are interested in the conditions under which it is possible to encode the syn-

chronous π-calculus into its asynchronous variant. Of course, we are not interested in

trivial or meaningless encodings. Instead we consider only those encodings that ensure

that the original term and its encoding show to some extent the same abstract behaviour.

Unfortunately, there is no consensus about what properties make an encoding “good”

(compare e.g. (Parrow 2008)). Instead, we find separation results as well as encodability

results with respect to very different conditions, which naturally leads to incomparable

results. Among these conditions, a widely used criterion is full abstraction, i.e. the preser-

vation and reflection of equivalences associated to the two compared languages. There

are lots of different equivalences in the range of π-calculus variants. Since full abstraction

depends, by definition, strongly on the chosen equivalences, a variation in the respec-
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tive choice may change an encodability result into a separation result, or vice versa.

Unfortunately, there is neither a common agreement about what kinds of equivalence

are well suited for language comparison—again, the results are often incomparable. To

overcome these problems, and to form a more robust and uniform approach for language

comparison, Gorla (2008, 2010) identifies five criteria as being well suited for separation

as well as encodability results. Here, we rely on these five criteria to measure the quality

of encodings between variants of the π-calculus. Compositionality and name invariance

stipulate structural conditions on a good encoding. Operational correspondence requires

that a good encoding preserves and reflects the executions of a source term. Divergence

reflection states that a good encoding shall not exhibit divergent behaviour, unless it was

already present in the source term. Finally, success sensitiveness requires that a source

term and its encoding have exactly the same potential to reach a successful state.

It is well known that there is a good encoding from the choice-free synchronous π-

calculus into its asynchronous variant (see (Boudol 1992, Honda & Tokoro 1991, Honda

1992)). It is also well-known (Palamidessi 2003, Gorla 2010, Peters & Nestmann 2010)

that there is no good encoding from the full π-calculus—the synchronous π-calculus

including mixed choice—into its asynchronous variant if the encoding translates the par-

allel operator homomorphically. Palamidessi was the first to point out that mixed choice

strictly raises the absolute expressive power of the synchronous π-calculus compared to

its asynchronous variant. Analysing this result (Peters & Nestmann 2010), we observe

that it boils down to the fact that only the full π-calculus can break syntactic symmetries,

whereas its asynchronous variant can not. Moreover, as already Gorla (2010) states, the

condition of homomorphic translation of the parallel operator is rather strict. Therefore,

Gorla proposes the weaker criterion of compositional translation of the source language

operators (see Definition 3.5 at page 23). As proved by Peters & Nestmann (2012), this

weakening of the structural condition on the encoding of the parallel operator turns

the separation result into an encodability result, i.e. there is an encoding from the syn-

chronous π-calculus (including mixed choice) into its asynchronous variant with respect

to the criteria of Gorla‡‡. Analysing the encoding given by Peters & Nestmann (2012), we

observe that it introduces additional causal dependencies, i.e. causal dependencies that

were not present in the source term and thus introduced by the encoding function. Next,

we show that this is a general phenomenon of encoding synchrony in the π-calculus.

Thus, as a main contribution of this section, we show that—in the asynchronous π-

calculus—there is a strong connection between synchronous interactions and causal de-

pendencies. More precisely we show—analogue to the separation result on Petri nets

of the previous section—that no encoding from the synchronous π-calculus with mixed

choice into the asynchronous π-calculus preserves causal independence and satisfies all

the criteria of (Gorla 2010).

Overview. In §3.1 we introduce the variants of the π-calculus we want to compare. §3.2

introduces the notion of encoding and defines the set of criteria we assume to hold to call

‡‡ Note that this encoding is neither prompt nor is the assumed equivalence ≍ strict, so the separation
results of Gorla (2010) do not apply here.
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an encoding “good”. Causality—or more precisely causal independence—is then defined

for the π-calculus in §3.3. In §3.4 we present our separation result for the π-calculus.

3.1. Technical Preliminaries

We study the relation between process calculi that differ in their either synchronous or

asynchronous interaction mechanism. Our source language—in case of the π-calculus—is

the monadic π-calculus as described for instance by Sangiorgi & Walker (2001). Since

the main reason for the differences in the expressiveness of the full π-calculus compared

to the asynchronous π-calculus is the power of mixed choice we denote the full π-calculus

also by πmix.

Let N denote a countably infinite set of names and N the set of co-names, i.e. N =

{ n | n ∈ N }. We use lower case letters a, a′, a1, . . . , x, y, . . . to range over names.

Definition 3.1 (πmix). The set of process terms of the π-calculus (with mixed choice),

denoted by Pmix, is given by

P ::= (ν n)P | P1 | P2 | !P | [ a = b ]P |
∑

i∈I

πi.Pi | X

where π ::= y (x) | y 〈z〉 for some names a, b, n, x, y, z ∈ N and a finite index set I .

The interpretation of the defined process terms is as usual. Restriction (ν n)P restricts

the scope of the name n to the definition of P . P1 | P2 defines parallel composition, i.e.

the process in which P1 and P2 may proceed independently, possibly interacting using

shared links. !P denotes recursion. The match prefix [ a = b ]P works as a conditional

guard. It can be removed iff a and b are equal. The process term
∑

i∈I
πi.Pi represents

finite guarded choice; as usual, the sum
∑

i∈{ 1,...,n } πi.Pi is sometimes written as π1.P1+

. . . + πn.Pn and 0 abbreviates the empty sum, i.e. where I = ∅. The input prefix y (x)

is used to describe the ability of receiving the value x over link y and, analogously, the

output prefix y 〈z〉 describes the ability to send a value z over link y. We denote y as the

subject of an action prefix y 〈z〉 or y (x) and z or x as its object. All branches of a choice

are guarded by one of these prefixes. Since some examples and our counterexample in

Section 3.4 are CCS-like we often omit the objects of actions. Moreover we denote the

empty sum with 0 and omit it in continuations, e.g. y 〈z〉 .0 is abbreviated as y. The term

X denotes success (or successful termination). It is introduced in order to compare the

abstract behaviour of terms in different process calculi as described in Section 3.2.

The asynchronous π-calculus (πa) was introduced independently in (Honda & Tokoro

1991) and (Boudol 1992). In asynchronous communication, a process has no chance to

directly determine, i.e. without a hint by another process, whether a value sent by it

was already received or not. To model that fact in πa, output actions are not allowed to

guard a process different from 0. Accordingly, the interpretation of output guards within

a choice construct is delicate. Here, we use the standard variant of πa, where choice is

not allowed at all. Since Pa has no choice, and thus no nullary choice, we include 0 as a

primitive.

Definition 3.2 (πa). The set of process terms of the asynchronous π-calculus, denoted
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by Pa, is given by

P ::= (ν n)P | P1 | P2 | !P | 0 | y 〈z〉 | y (x) .P |

[ a = b ]P | X

for some names a, b, n, x, y, z ∈ N .

As shown by the encoding by Nestmann (2000) one could also use separate choice

within an asynchronous variant of the calculus without a significant effect on its expres-

sive power. Accordingly, our separation result holds already for πsep—πmix restricted to

separate choice—as target language.

Definition 3.3 (πsep). The set of process terms of the π with separate choice, denoted

by Psep, is given by

P ::= (ν n)P | P1 | P2 | !P |
∑

i∈I

πO
i .Pi |

∑

i∈I

πI
i .Pi |

[ a = b ]P | X

where πO ::= y 〈z〉 and πI ::= y (x) for some names n, x, y, z ∈ N and a finite index set

I .

As expected, the definitions of πsep and πmix differ in the definition of choice only. In the

following we use πsep as target language. Since πa is a subcalculus of πsep the following

results hold also for πa as target language.

In the literature there are different variants of the “full” π-calculus. It can be defined

without the match prefix, with different variants of replication or recursion, or with gen-

eralised choice P1+P2 instead of guarded choice. Note that neither the match prefix nor

any form of replication or recursion occurs in our counterexample in Section 3.4. More-

over the definition of causality in Section 3.3 is such that the presence of the match prefix

does not influence Lemma 3.18 and Lemma 3.19. Hence, because our separation result

in Section 3.4 relies only on these two lemmata for causality and the counterexample as

only source term, the presence of the match prefix does not influence our results. In fact

our separation result holds even if we remove the match prefix from our source language

πmix but let it remain in our target languages πsep and πa, i.e. even with the power of

matching—which as shown in (Carbone & Maffeis 2003) increases the expressive power

of the π-calculus—no “good” encoding from πmix into πa preserves causal independence.

The same holds for replication or recursion. Causality can be defined for different vari-

ants of replication or recursion. (Priami 1996) e.g. defines causality for a variant of the

π-calculus with recursive definitions of process constants instead of replication. Again for

all these variants we can show conditions similar to Lemma 3.18 and Lemma 3.19. Hence

our results are also not influenced by the choice of the operator for replication or recur-

sion. Similarly we can replace guarded choice by generalised choice P1+P2 in our source

language πmix, because guarded choice is a special case of generalised choice and thus our

counterexample would still belong to the source language. On the other side replacing

separate choice by generalised choice or adding generalised choice to πa would invalidate

our separation result. However, since already the interpretation of output guards within
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a choice construct is delicate for an asynchronous calculus, we do not consider a variant

of the π-calculus with generalised choice as asynchronous.

We use capital letters P, P ′, P1, . . . , Q,R, . . . to range over processes. If we refer to

processes—without further requirements, we denote elements of Pmix; we sometimes use

just P when the discussion applies to all three calculi. Let fn(P ) denote the set of free

names in P . Let bn(P ) denote the set of bound names in P . Likewise, n(P ) denotes the

set of all names occurring in P . Their definitions are completely standard, i.e. names are

bound by restriction and as parameter of input and n(P ) = fn(P ) ∪ bn(P ) for all P .

Let P ∈ P . A term M is a top-level subterm of P if M is a subterm that is unguarded

in P such that the outermost operator of M is choice if P ∈ { Pmix,Psep }; and else if

P ∈ Pa then either M = y (x) .P ′ or M = y 〈z〉 for some x, y, z ∈ N and P ′ ∈ Pa. In

both cases there is a sequence of names ñ and P ′ ∈ P such that P ≡ (ν ñ) (M | P ′).

P ≡ Q if Q can be obtained from P by renaming one or more of the

bound names in P, silently avoiding name clashes

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

[ a = a ]P ≡ P !P ≡ P | !P (ν n)0 ≡ 0

(ν n) (ν m)P ≡ (ν m) (ν n)P P | (ν n)Q ≡ (ν n) (P | Q) if n /∈ fn(P )

Figure 6. Structural Congruence.

The reduction semantics of πmix, πsep and, πa are jointly given by the transition rules

in Figure 7, where structural congruence, denoted by ≡, is given by the rules in Figure 6.

Note that the rule Coma for communication in πa is a simplified version of the rule Com

for communication in πmix and πsep. The differences between these two rules result from

the differences in the syntax, i.e. the lack of choice and the fact that only input can be

used as guard in πa. As usual, we use ≡α if we refer to alpha-conversion (the first rule of

Figure 6) only.

We use σ, σ′, σ1, . . . to range over substitutions. σ = { x1/y1
, . . . ,xn/yn

} is a mapping

from names to names. The application of a substitution on a term { x1/y1
, . . . ,xn/yn

} (P )

is defined as the result of simultaneously replacing all free occurrences of yi by xi for

i ∈ { 1, . . . , n }, possibly applying alpha-conversion to avoid capture or name clashes. For

all names N \ { y1, . . . , yn } the substitution behaves as the identity mapping.

Let P 7−→ (and P 67−→) denote the existence (and non-existence) of a step from P , i.e.

there is (no) P ′ ∈ P such that P 7−→ P ′. Moreover, let Z=⇒ be the reflexive and transitive

closure of 7−→. We write P 7−→ω if P can perform an infinite sequence of reduction steps.

A sequence of reduction steps starting in a term P is called execution of P . An execution
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Com (. . .+ y (x) .P + . . .) | (. . .+ y 〈z〉 .Q+ . . .) 7−→ { z/x }P | Q

Coma y (x) .P | y 〈z〉 7−→ { z/x }P

Par
P 7−→ P ′

P | Q 7−→ P ′ | Q
Res

P 7−→ P ′

(ν n)P 7−→ (ν n)P ′

Cong
P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

Figure 7. Reduction Semantics of πmix and πa.

is either finite as P0 7−→ P1 7−→ . . . 7−→ Pn or infinite. A finite execution P0 Z=⇒ Pn is

maximal if it cannot be further extended, i.e. if Pn 67−→, otherwise it is partial. We denote

a process as convergent, if it has no infinite execution.

In order to conveniently identify which occurrences of actions contributed to the reduc-

tion steps in an execution at hand, we define a labelling on it: more precisely, to each of

the prefixes occurring in the terms of the execution, we assign a unique label. Therefore,

let L be a set of labels such that L ∩ N = ∅ and L ∩ N = ∅. The labelled variants of

the sets Pmix, Psep, and Pa are obtained by replacing prefixes of the form π.P simply by

πl.P , where l ∈ L. But, for the purpose of uniqueness, all prefixed actions of a process

term must be equipped with pairwise different labels.

In order to state that a labelled execution consists of steps that are deduced via a

reduction semantics, we define a labelled version of both the reduction semantics and

structural congruence. They are obtained in a mostly straightforward way, as follows:

1 With the exception of the rule !P ≡ P | !P , the labelled variants of the structural

congruence rules are unchanged, but just operate on labelled terms P , Q, and R. The

labelled variant of !P ≡ P | !P is !P ≡ P ′ | !P , where again P is a labelled term and

P ′ is obtained from P by replacing all labels by fresh labels.

2 The labelled variants of the rules Com and Coma are
(
. . .+ y (x)l1 .P + . . .

)

︸ ︷︷ ︸

M1

|
(
. . .+ y 〈z〉l2 .Q+ . . .

)

︸ ︷︷ ︸

M2

{l1,l2}
7−→ { z/x }P | Q

and y (x)l1 .P | y 〈z〉l2
{l1,l2}
7−→ { z/x }P

with P and Q being labelled terms and l1, l2 ∈ L. Abbreviations for X
{l1,l2}
7−→ Y are

X
l1,l2
7−→ Y and X

L
7−→ Y (with L = {l1, l2}).

Accordingly, the labelled variants of Par, Res, and Cong are

P
L

7−→ P ′

P | Q
L

7−→ P ′ | Q

P
L

7−→ P ′

(ν n)P
L

7−→ (ν n)P ′
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and

P ≡ Q Q
L

7−→ Q′ Q′ ≡ P ′

P
L

7−→ P ′

where P , P ′, Q, and Q′ are labelled terms and ≡ denotes the labelled variant of

structural congruence.

By this adaptation of the definition, a labelled term has a labelled reduction step iff its

corresponding unlabelled term has a standard reduction step.

A reduction step P
L

7−→ P ′ reduces the prefixed action π1 and π2 or the corresponding

subterms M1 and M2 that are top-level in P if these are—identifiable through their la-

bels—the prefixed actions (or the subterms containing them) that are used to instantiate

the only application of the labelled Com/Coma-rule in the proof tree of this step.

A labelled (and potentially partial) execution is then an execution of labelled terms.

Due to the freshness condition on applications of the replication law, we need to construct

the labelling of terms in a given execution in an on-the-fly manner. For our purpose, we

only need to define labelling for finite executions.

Definition 3.4 (Labelled Execution). Let E : P0 7−→ . . . 7−→ Pn be a finite execution

and let L be a set of labels. To obtain a labelled variant of E:

1 Assign a unique label l ∈ L to each prefix in P0.

2 For all i ∈ { 1, . . . , n } the labels of Pi are obtained from the labels of Pi−1 by replacing

in the proof tree of Pi−1 7−→ Pi the term Pi−1 and the rules of structural congruence

and operational semantics by their corresponding labelled variant. Thereby for each

application of !P ≡ P ′ | !P the fresh labels introduced by this rule do not occur in

the labelled variant of the execution so far, i.e. they are distinct from all labels in

P0, . . . , Pi−1 and all other labels in Pi.

Note that, because reduction steps consume prefixed actions, Pi does not contain all

the labels of Pi−1. On the other side, because of the introduction of fresh labels by the

structural congruence rule !P ≡ P | !P , the term Pi can contain some labels that do not

yet occur in Pi−1. Moreover note that an unlabelled finite execution can have different

labelled variants. However, by definition, all these variants only differ in the choice of

distinct labels, i.e. all these variants are pairwise equivalent modulo some bijection on

labels.

The first quality criterion to compare process calculi presented in Section 3.2 is com-

positionality. It induces the definition of a context parametrised on a set of names for

each operator of πmix. A context C([·]1, . . . , [·]n) : Pn → P is simply a π-term, i.e. a πsep-

term (or πa-term) in case of Definition 3.5, with n holes. Putting some πsep-terms (or

πa-terms) P1, . . . , Pn in this order into the holes [·]1, . . . , [·]n of the context, respectively,

gives a term denoted C(P1, . . . , Pn). Note that a context may bind some free names of

P1, . . . , Pn. The arity of a context is the number of its holes.

3.2. Quality Criteria for Encodings in the π-Calculus

Gorla (2010) presented a small framework of five criteria well suited for language com-
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parison in case of process calculi. We use these five criteria to measure the quality of

an encoding J · K from πmix into πa or πsep, i.e. such an encoding J · K is “good” if

it fulfils the criteria proposed by Gorla. Note that for the definition of these criteria a

behavioural equivalence ≍ on the target language is assumed. Its purpose is to describe

the abstract behaviour of a target process, where abstract basically means with respect

to the behaviour of the source term.

The five conditions are divided into two structural and three semantic criteria. The

structural criteria comprise (1) compositionality and (2) name invariance. The semantic

criteria comprise (3) operational correspondence, (4) divergence reflection and (5) success

sensitiveness. In the following we use S, S′, S1, . . . to range over terms of the source

language and T, T ′, T1, . . . to range over terms of the target language.

Intuitively, an encoding is compositional if the translation of an operator depends

only on the translation of its parameters. To mediate between the translations of the

parameters the encoding defines a unique context for each operator, whose arity is the

arity of the operator. Moreover, the context can be parametrised on the free names of the

corresponding source term. Note that our result is independent of this parametrisation.

Definition 3.5 (Criterion 1: Compositionality). The encoding J · K is compositional

if, for every k-ary operator op of the source language and for every subset of names N ,

there exists a k-ary context CN
op

([·]1, . . . , [·]k) in the target language such that, for all

S1, . . . , Sk with fn(S1) ∪ . . . ∪ fn(Sk) = N , it holds that

J op (S1, . . . , Sk) K = CN
op

(J S1 K, . . . , J Sk K) .

The second structural criterion of Gorla states that the encoding should not depend on

specific names used in the source term. We do not need this criterion for our separation

result. Thus we omit it.

The first semantic criterion is operational correspondence, which consists of a sound-

ness and a completeness condition. Completeness requires that every execution of a

source term can be simulated by its translation, i.e. the translation does not omit any

executions of the source term. Soundness requires that every execution of a target term

corresponds to some execution of the corresponding source term, i.e. the translation does

not introduce new executions.

Definition 3.6 (Criterion 3: Operational Correspondence). The encoding J · K is

operationally corresponding if it is
Complete: for all S Z=⇒ S′, it holds that J S K Z=⇒≍ J S′ K;

Sound : for all J S K Z=⇒ T , there exists an S′

such that S Z=⇒ S′ and T Z=⇒≍ J S′ K.

Note that the Definition of operational correspondence relies on the equivalence ≍ to

get rid of junk possibly left over within executions of target terms. Sometimes, we refer

to the completeness criterion of operational correspondence as operational completeness

and, accordingly, for the soundness criterion as operational soundness.

The next criterion concerns the role of infinite executions in encodings.



K. Peters, J.-W. Schicke, U. Goltz & U. Nestmann 24

Definition 3.7 (Criterion 4: Divergence Reflection). The encoding J · K reflects

divergence if, for every S, J S K 7−→ω implies S 7−→ω.

The last criterion links the behaviour of source terms to the behaviour of target terms.

With Gorla (2010), we assume a success operator X to be part of the syntax of both

the source and the target language. Since X cannot be further reduced, the operational

semantics is left unchanged. Moreover, note that n(X) = fn(X) = bn(X) = ∅, so also

interplay of Xwith the ≡-rules is smooth and does not require explicit treatment. The

test for reachability of success is standard.

Definition 3.8 (Success). A process P ∈ P may lead to success, denoted as P ⇓X,

iff it is reducible to a process containing a top-level unguarded occurrence of X, i.e.

∃P ′, P ′′ ∈ P . P Z=⇒ P ′ ∧ P ′ ≡ P ′′ | X.

Note that we choose may-testing here. However, as we claim, our main result in Theorem

3.24 holds for must-testing, as well. Moreover, we write P ⇓X!, if P has only finite exe-

cutions and reaches success in every finite maximal execution.

Finally, an encoding preserves the behaviour of the source term if it and its corre-

sponding target term answer the tests for success in exactly the same way.

Definition 3.9 (Criterion 5: Success Sensitiveness). The encoding J · K is success

sensitive if, for every S, S ⇓X iff J S K ⇓X.

Note that this criterion only links the behaviours of source terms and their literal trans-

lations but not of their continuations. To do so, Gorla relates success sensitiveness and

operational correspondence by requiring that the equivalence on the target language

never relates two processes P and Q such that P ⇓ and Q 6⇓.

Definition 3.10 (Success Respecting). ≍ respects success if, for every P and Q with

P ⇓ and Q 6⇓, it holds that P 6≍ Q.

By (Gorla 2010) a “good” equivalence ≍ is often defined in the form of a barbed

equivalence (as described e.g. in (Milner & Sangiorgi 1992)) or can be derived directly

from the reduction semantics and is often a congruence, at least with respect to parallel

composition. For the separation results presented in this paper, we require only that ≍

is a success respecting reduction bisimulation.

Definition 3.11 (Reduction Bisimulation). The equivalence ≍ is a (weak) reduction

bisimulation if, for every T1, T2 in the target language such that T1 ≍ T2, for all T1 Z=⇒ T ′
1

there exists a T ′
2 such that T2 Z=⇒ T ′

2 and T ′
1 ≍ T ′

2.

In this case, a good encoding respects also the ability to reach success in all finite

maximal executions.

Lemma 3.12. For all success respecting reduction bisimulations ≍ and all convergent

target terms T1, T2 such that T1 ≍ T2, it holds T1 ⇓X! iff T2 ⇓X!.

Proof. Let us assume the opposite, i.e. there is some success respecting bisimulation

≍ and two convergent target terms T1, T2 such that T1 ≍ T2 and T1 ⇓X! but not T2 ⇓X!.
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Then, for all T ′
1 with T1 Z=⇒ T ′

1, we have T ′
1 ⇓X but there exists some T ′

2 such that

T2 Z=⇒ T ′
2 and T ′

2 6⇓X. By Definition 3.11, T1 ≍ T2 and T2 Z=⇒ T ′
2 imply that there exists

some T ′′
1 such that T1 Z=⇒ T ′′

1 and T ′
2 ≍ T ′′

1 . By Definition 3.10, T ′
2 ≍ T ′′

1 and T ′
2 6⇓X

imply T ′′
1 6⇓X. This violates the requirement that T1 ⇓X!, i.e. contradicts the assumption

that for all T ′
1 with T1 Z=⇒ T ′

1 we have T ′
1 ⇓X. We conclude that T1 ⇓X! iff T2 ⇓X!.

Moreover, in this case success sensitiveness preserves also the ability to reach success

in all finite maximal executions.

Lemma 3.13. For all operationally sound, divergence reflecting, and success sensitive

encodings J · K with respect to some success respecting equivalence ≍ and for all conver-

gent source terms S, if S ⇓X! then J S K ⇓X!.

Proof. Assume the opposite, i.e. there is an encoding that satisfies the criteria oper-

ational soundness, divergence reflection, and success sensitiveness, ≍ respects success,

and there is some convergent S such that S ⇓X!, but J S K 6⇓X!. By divergence reflection,

all encodings of a convergent source term are convergent. Thus, J S K 6⇓X! implies that

there is some T such that J S K Z=⇒ T and T 6⇓X. By Definition 3.6, J S K Z=⇒ T implies

that there exists some S′′ and some T ′ such that S Z=⇒ S′′ and T Z=⇒ T ′ ≍ J S′′ K. By

Definition 3.8, then T 6⇓X and T Z=⇒ T ′ imply T ′ 6⇓X. By Definition 3.10, T ′ ≍ J S′′ K

and T ′ 6⇓X imply J S′′ K 6⇓X. By Definition 3.9, then also S′′ 6⇓X, which contradicts the

assumption that S ⇓X!. We conclude that if S ⇓X! then J S K ⇓X!.

3.3. Causality in the π-Calculus

As explained above, the extraction of causal information from Petri nets is rather un-

ambiguous. This is not so in the π-calculus. Here, a number of approaches have been

pursued to extract causal information from process terms and their semantics, leading

to various notions of dependencies mostly defined on actions, inducing notions of depen-

dency on transitions or reduction steps. Following (Boreale & Sangiorgi 1998) two kinds

(or sources) of causal dependencies can be distinguished.

The first kind of causal dependencies, called structural or subject dependency, originates

from the nesting of prefixes, i.e. from the structure of processes. Therefore, it is a notion

that already occurs in non-name-passing calculi like CCS. A typical example of such a

dependency is given by the term (ν b)
(
a.b | b.c

)
, in which—according to the operational

semantics—the action a must happen before the action b can take place; likewise does

the action c depend on the action b having happened before. There is another, less

explicit dependency involved, here, due to the restriction on name b. Having again the

operational semantics in mind, c also causally depends on a happening before, because

only then the required interaction between b and b becomes enabled§§. Note, however,

that this observation is only valid due to the restriction on b: without the restriction on b,

the action b in the term
(
a.b | b.c

)
might also find some partner b from elsewhere, which

is usually expressed by means of a standard labelled transition semantics. On the other

§§ Note that the notions of causality and enabling are sometimes kept separate (Priami 1996).
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hand, if we only have reduction semantics in mind—as we do in this paper—then we

implicitly assume that we ignore such communication possibilities to some extent. With

reduction semantics, one would need to supply this partner explicitly, as in
(
a.b | b.c

)
| b,

to let reduction semantics observe this causal independence. In fact, it depends on the

actual execution leading to c being enabled, whether we want to state that, in this

particular execution, the c was actually causally depending on a, or not. Let us now also

add a partner for the action c and analyse the execution
(
a.b | b.c

)
| a | c 7−→

(
b | b.c

)
|

c 7−→ c | c 7−→ 0. In what follows, we no longer observe the dependencies between actions

in a term, but between steps in a reduction sequence. Here, the second step on channel

b is causally dependent on the first step on a, because this particular first step unguards

b. Similarly, the step on c is causally dependent on the step on b, and by transitivity the

step on c is—in this particular execution—causally dependent on the step on a.

The second kind of causal dependencies in the π-calculus is called link or object depen-

dency and originates from the binding mechanisms on names; thus, it is specific to name-

passing calculi. Here, a typical example is (ν x) (y 〈x〉 | x). With a labelled semantics in

mind, the action x causally depends on the extrusion of x by the action y 〈x〉, because

none but a receiver along y may possibly know and use the name x. In contrast, with

a reduction semantics in mind, and as sketched above the complementary actions would

need to be supplied explicitly to see the extrusion effect and observe the object depen-

dency. So, let us analyse the execution (ν x) (y 〈x〉 | x) | y (z) .z 7−→ (ν x) (x | x) 7−→ 0.

Note that, here, the reduction step on x causally depends on the reduction step on y.

However, the dependency ultimately arises from the required structural dependency of

the partner. In fact, this is no real surprise, as within reduction semantics all scope

extrusions result from transformations within structural congruence. Hence, as we only

consider reduction semantics in this paper, we safely restrict our attention to subject

dependencies.

In general, and as already indicated above, different executions of the same term can

exhibit different causal dependencies between steps, although they arise from the same

actions. There is, for instance, a causal dependency in the execution
(
a | a.b | b | b

)
7−→

(
b | b | b

)
7−→ b—if the second step reduces the b that is originally guarded by a, then the

second step is causally dependent on the first—whereas there is no causal dependency

between the first and second step in
(
a | a.b | b | b

)
7−→

(
a | a.b

)
7−→ b. There are two

problems in the detection of causal dependencies within an execution. First, in order to

detect causal dependencies we have to distinguish between equivalent parts of a term as

the two instances of b in the example above. Second, in order to examine whether a step

s2 is causally dependent on a step s1 in an execution, we have to consider all steps that

occur in this execution after the step s1 and before the step s2.

Technically, in order to detect causal dependencies in executions, we use the labelled

counterparts introduced in Section 3.1. Before we delve into this, we first exploit the

labelling to define notions of conflict between reduction steps. Intuitively, steps are in

conflict if each of them can happen but not both together. Technically, steps are in

conflict when they compete for some of the subterms they reduce.

Definition 3.14. Let P, P12, P34 ∈ P with s12 : P
l1,l2
7−→ P12 and s34 : P

l3,l4
7−→ P34.
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The reduction steps s12 and s34 are in conflict, if there is some top-level subterm

M ∈ P that is reduced by both steps, i.e. such that one of the labels { l1, l2 } and one of

the labels { l3, l4 } both occur in M .

Consider for example the labelled term P = al1 | (al2 + bl3) | bl4 and the steps s12 : P
l1,l2
7−→

bl4 and s34 : P
l3,l4
7−→ al1 . These two steps compete for the top-level subterm al2+bl3 . Hence

s12 and s34 are in conflict. But in the example Q = al5 | al6 | bl7 | bl8 | al9 there is no

top-level subterm that is reduced in both of the steps s56 : Q
l5,l6
7−→ bl7 | bl8 | al9 and

s78 : Q
l7,l8
7−→ al5 | al6 | al9 . Thus s56 and s78 are not in conflict. However s56 and the step

Q
l5,l9
7−→ al6 | bl7 | bl8 are in conflict, because they compete for al5 .

Note that if a potentially successful term can remove all possibilities to reach success

in a step then there is another step that does not remove the possibility to reach success

such that these two steps are in conflict.

Lemma 3.15. Let P ∈ { Pmix,Psep,Pa }. Let Q,Q1 ∈ P such that Q ⇓X, s1 : Q 7−→ Q1,

and Q1 6⇓X. Then there exists Q2 ∈ P such that s2 : Q 7−→ Q2, Q2 ⇓X, and s1 and s2 are

in conflict.

Proof. We consider the labelled variants of terms and steps.

Because of s1 : Q
l1,l27−→ Q1, there are two different top-level subterms M11 and M12 of

Q that are reduced in s1. By Definition 3.8, Q ⇓X, and Q1 6⇓X, all occurrences of X in

Q are guarded and it is possible to unguard one such occurrence. Since Q1 6⇓X, the step

s1 removes all possibilities to reach success. To do so s1 has to either reduce a sum such

that a (guarded) summand is discarded, whose reduction does allow to reach success, or

reduce a prefix, that could if it is reduced with another communication partner lead to

success. In both cases the step s1 removes a prefix πl such that l is a label in Q but not

in Q1, i.e. l is a label in either M11 or M12, and there is another step s2 : Q
l3,l4
7−→ Q2 such

that l ∈ { l3, l4 } and Q2 ⇓X. Let M21 and M22 be the top-level subterms of Q that are

reduced in s2. Since l is a label in either M11 or M12 and l ∈ { l3, l4 }, the steps s1 and

s2 are in conflict, i.e. { M11,M12 } ∩ { M21,M22 } 6= ∅.

To detect causal dependencies we derive a partial order on the labels of an execution.

Definition 3.16. Let E : P0 7−→ . . . 7−→ Pn be a finite labelled execution, and let LE

be the set of labels that are used in E. The partial order ≤L ⊆ LE × LE of labels in E

is the smallest reflexive and transitive relation such that:

1 For all subterms πl.P
′ of P0 with label l ∈ LE , and for all labels l′ ∈ LE that occur

in P ′, also l ≤L l′.

2 For all l1 ≤L l2 with l1, l2 ∈ LE , and for all applications of !P ≡ P ′ | !P such that l1
does not occur in P or P ′ and l2 labels a πl2 in P whose copy πl′

2
in P ′ is labelled by

l′2 ∈ LE , also l1 ≤L l′2.

3 For all l1 ≤L l2 with l1, l2 ∈ LE , and for all applications of !P ≡ P ′ | !P such that l1
labels a πl1 in P and l2 labels a π′

l2
in P whose copies πl′

1
and π′

l′
2

in P ′ are labelled

by l′1, l
′
2 ∈ LE , also l′1 ≤L l′2.
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4 For all l1 ≤L l2 and l3 ≤L l4 with l1, l2, l3, l4 ∈ LE such that there is a step in the

execution that is labelled by l2, l3 or l3, l2, also l1 ≤L l4.

Condition 1 collects all causal dependencies in P0. Since the labels of Pi are derived from

the labels of Pi−1 this suffices to detect all causal dependencies that directly result from

the nesting of prefixes in all terms of the execution. Conditions 2 and 3 copy the known

inequalities for fresh labels that result from !P ≡ P ′ | !P . With the last condition causal

dependencies are inherited symmetrically in communication steps such that a cause for

a step s is also a cause for all steps of subterms that are unguarded in s. Moreover note

that by design for all labelled variants of an unlabelled finite execution the corresponding

partial order of labels is the same modulo the corresponding bijection of labels.

Now, we may call two reduction steps causally dependent if the reduced labels are

contained in ≤L. To capture this information, we define Li ≤L Lj if there are l1 ∈ L1

and l2 ∈ L2 with l1 ≤L l2.

Definition 3.17 (Causal (In)dependence). Let E : P0
L17−→ . . .

Ln7−→ Pn be a finite

labelled execution, let ≤L be the partial order of labels in E, let i, j ∈ { 1, . . . , n } such

that i 6= j, and let si : Pi−1
Li7−→ Pi and sj : Pj−1

Lj

7−→ Pj denote the i’th and the j’th

step of E. Then,

— sj is causally dependent on si in E, written si ≤E sj , if Li ≤L Lj ;

— si and sj are causally independent if neither si ≤E sj nor sj ≤E si.

Two steps of an unlabelled finite execution are causally dependent (independent) iff

the corresponding steps of a labelled variant of this execution are causally dependent

(independent).

Note that the above defined variant of causal dependencies coincides with a reduction-

based variant of the definition of so-called enabling in (Priami 1996, Degano & Priami

1999), where causality is distinguished from enabling. The main difference there between

these two notions is that for causality the cause of a step is inherited only by the con-

tinuation of the receiver of a step, because there is no information flow from a receiver

to a sender, whereas for enabledness—as in our definition of causality—causes are inher-

ited symmetrically by both sender and receiver. By (Degano & Priami 1999), enabling

coincides with causality in (Boreale & Sangiorgi 1998) and (Busi & Gorrieri 1995). More-

over—as already proved in (Priami 1996, Degano & Priami 1999)—the here used version

of causality, where causes are inherited symmetrically, has two nice properties: (1) Two

causally independent steps of an execution can be swapped and (2) if an execution has

two causally independent steps, then there exists an execution in which these two steps

occur consecutively. In fact, in order to derive our separation result for the π-calculus

we make use of these two conditions. Hence we adapt the proofs of these two statements

in (Priami 1996, Degano & Priami 1999) to our definition of causality with respect to

reduction semantics. To prove that two consecutive steps of an execution can be swapped

if they are causally independent we need to show that a step can neither consume nor un-

guard the subterms that are reduced in a consecutive causally independent step. Hence all
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subterms that are reduced in one of these two steps are already unguarded and composed

in parallel before the first of the two step occurs.

Lemma 3.18. Let P ∈ { Pmix,Psep,Pa }. For all P1, P2, P3,M1,M2,M3,M4 ∈ P such

that P1 7−→ P2 7−→ P3, where s1 : P1 7−→ P2 reduces M1 and M2 and s2 : P2 7−→ P3

reduces M3 and M4, and s1 and s2 are causally independent, there is P ′
2 ∈ P such that

P1 7−→ P ′
2 7−→ P3, where s′1 : P1 7−→ P ′

2 reduces M3 and M4 and s′2 : P ′
2 7−→ P3 reduces

M1 and M2.

Proof. Let P1
L17−→ P2

L27−→ P3 be the labelled variant of P1 7−→ P2 7−→ P3, i.e. s1 :

P1
L17−→ P2 and s2 : P2

L27−→ P3. Since s1 and s2 are causally independent (Definition 3.17),

neither L1 ≤L L2 nor L2 ≤L L1. Since s1 reduces M1 and M2, these two subterms are

top-level in P1. Similarly, M3 and M4 are top-level in P2.

To show that also M3 and M4 are top-level in P1 assume the opposite, i.e. assume that

M3 orM4 are guarded in P1. Then, since they are unguarded in P2 they are unguarded by

s1. But the only prefixed actions that are removed in s1 without removing their subterms

are labelled by one of the two labels in L1. Thus, because each of the terms M3 and M4

contains a label in L2, and because of Condition 1 of Definition 3.16, there is L1 ≤L L2.

But this inequality contradicts the assumption that s1 and s2 are causally independent.

Hence M3 and M4 are unguarded and thus top-level in P1.

If M3 = M1 then M3 and thus one of the two labels in L2 is removed in s1, i.e.

by Definition 3.4 this label does not occur in P2 and no such label can be produced

modulo structural congruence. This contradicts the assumption that s2 reduces the two

prefixes that are labelled by the labels in L2. Repeating the same argument we have

M3 /∈ { M1,M2 } and M4 /∈ { M1,M2 }. Note that, because of the definition of top-level,

neither M3 nor M4 are unguarded parts of the same sum as M1 or M2.

We conclude that modulo structural congruence the M1, . . . ,M4 are all unguarded and

composed in parallel within P1, i.e.

P1 ≡ (ν ñ) ((ν ñ1) (M1 | M2) | (ν ñ2) (M3 | M4) | R)

P2 ≡ (ν ñ) (D1 | (ν ñ2) (M3 | M4) | R) , and

P3 ≡ (ν ñ) (D1 | D2 | R)

for some sequences of names ñ, ñ1, and ñ2, and some R,D1, D2 ∈ P . Thus the steps s1
and s2 can be swapped, i.e. there is some P ′

2 ∈ P such that P1 7−→ P ′
2 7−→ P3, P

′
2 ≡

(ν ñ) ((ν ñ1) (M1 | M2) | D2 | R), s′1 : P1 7−→ P ′
2 reduces M3 and M4, and s′2 : P ′

2 7−→ P3

reduces M1 and M2.

Of course, s′1 and s′2 are again causally independent.

Repeating the above lemma we can turn each execution that contains two causally

independent steps into an execution in which these two steps occur consecutively.

Lemma 3.19. Let P ∈ { Pmix,Psep,Pa }. For all P, P1, P2, P3, P4,M1,M2,M3,M4 ∈ P

such that P Z=⇒ P1 7−→ P2 Z=⇒ P3 7−→ P4, where s1 : P1 7−→ P2 reduces M1 and M2

and s2 : P3 7−→ P4 reduces M3 and M4, and s1 and s2 are causally independent, there
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are P ′
1, P

′
2, P

′
3 ∈ P such that P Z=⇒ P ′

1 7−→ P ′
2 7−→ P ′

4, where s′1 : P ′
1 7−→ P ′

2 reduces M1

and M2 and s′2 : P ′
2 7−→ P ′

3 reduces M3 and M4.

Proof. The proof is by induction on the number n of steps between s1 and s2. If

n = 0 then the lemma holds trivially. Otherwise, assume as inductive hypothesis that

the lemma holds for any k ≤ n and consider the case of k + 1 steps t1, . . . , tk+1 between

s1 and s2. Let h ∈ { 1, . . . , k + 1 } denote the minimal index such that s1 and th are

causally independent.

We show that for all steps tg such that g < h the steps tg and th are causally indepen-

dent. Consider the labelled variant of P Z=⇒ P1 7−→ P2 Z=⇒ P3 7−→ P4. If there is some

g ∈ { 1, . . . , h− 1 } such that th is causally dependent on tg then, by Definition 3.17,

there are lg, lh ∈ L such that tg reduces a prefixed action labelled by lg, th reduces a

prefixed action labelled by lh, and lg ≤L lh. Since h is the minimal index such that

s1 and th are causally independent and because g < h, tg is causally dependent on s1.

Thus there are l1, l
′
g ∈ L such that s1 reduces a prefixed action labelled by l1, either

lg = l′g or the other prefixed action reduced in tg is labelled by l′g, and l1 ≤L l′g. In both

cases, either by transitivity or by Condition 4 of Definition 3.16, l1 ≤L lh. But then, by

Definition 3.17, th is causally dependent on s1 which contradicts our assumption that

s1 and th are causally independent. Hence tg and th are causally independent for all

g ∈ { 1, . . . , h−1 }.

If h = 1, i.e. if s1 and th are consecutive steps, then, by Lemma 3.19 they can be

swapped. Else if h > 1 then, again by Lemma 3.19, the steps th−1 and th can be swapped,

because the th−1 and th are causally independent. Repeating this argument h times we

obtain an execution where th occurs before s1, i.e. where there are no more than k steps

between s1 and s2. Thus we can conclude with the induction hypothesis.

Note that the two lemmas above do not hold for the definition of causality in (Priami

1996, Degano & Priami 1999). Hence, our separation result between πmix and πsep in the

next section might not hold for their definition of causality but only enabling. However in

πa, because outputs cannot guard a process different from 0, the two notions of causality

coincide. Thus our argumentation in the next section suffices even for the definition of

causality in (Priami 1996, Degano & Priami 1999) to separate πmix from πa, i.e. at least

the separation result between πmix and πa holds for both definitions of causality.

With the definition of causality in mind we define preservation of causal independence

in the context of encodings. Remember that steps are often translated into sequences of

steps. Hence, we lift our definition of causal independence between steps to sequences of

steps.

Definition 3.20. Two sequences A and B of steps within an execution are causally

independent iff each pair of a step in A and a step in B is causally independent.

Moreover, a sequence of steps simulating a single source term step may be interleaved

with another such sequence or some other target term steps. For example, there can be

target term steps used to prepare the simulation of a source term step, whose simulation

may never be completed. Note that the sequences A and B can be interleaved within the
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execution. An encoding then preserves causal independence if the simulations of causally

independent source term steps are causally independent.

Definition 3.21. An encoding preserves causal independence of source term steps iff for

each simulation of a source term execution and for each pair of causally independent steps

within this source term execution the simulations of these steps are causally independent.

At a first glimpse this definition might seem strict, since every pair of steps of causally

independent simulations has to be causally independent. But in fact the above definition

is rather relaxed, because we do not specify when a step belongs to a simulation. Hence,

we still allow for pre- and post-processing steps to belong to no simulation at all. The

only requirement we use in the next section is that if a step marks a conflict between

two different simulations, i.e. if a step ensures that the execution simulates a source term

step sx and rules out that a source term step—say sy—is simulated then this step has

to belong to the simulation of sx and is thus no pre- or post-processing step.

3.4. Encoding the Synchronous Pi-Calculus

In this section, we show that no good encoding from πmix into πsep preserves causal

independence. Since πa is a subcalculus of πsep, the same holds for any good encoding

from πmix into πa.

As counterexample we consider the (family of) source term(s)

P
⋆ , (a+ b.Pb) |

(
b+ c.Pc

)
| (c+ d.Pd) |

(
d+ e.Pe

)
| (e+ a.Pa)

for Pa, . . . , Pe ∈ { 0,X}, i.e. we consider all variants of P⋆ that satisfy the above descrip-

tion and differ only in the subterms Pa, . . . , Pe which are either equal to 0 or X, respec-

tively. Moreover let P ′
i denote the result of a step on channel i for all i ∈ { a, . . . , e },

i.e. for example P ′
a = Pa |

(
b+ c.Pc

)
| (c+ d.Pd) |

(
d+ e.Pe

)
. n(0) = ∅ = n(X) and thus

all the variants of our counterexample P
⋆ have the same free names. Because of that

and because of compositionality (Definition 3.5), the encodings of different variants of

P
⋆ differ in the encodings of the respective subterms Pi only.

Observation 3.22. There exists a context C([·]1, . . . , [·]5) in πsep such that for all

Pa, . . . , Pe ∈ { 0,X} we have J P⋆ K = C(J Pa K, . . . , J Pe K).

In particular this means, that all executions of J P
⋆ K that do not reduce some part of

J Pa K, J Pb K, J Pc K, J Pd K, or J Pe K are exactly the same for all variants of P⋆ with

Pa, . . . , Pe ∈ { 0,X}.

Moreover we observe that—in opposite to πmix—in πsep each reduction step reduces

exactly one (possibly unary) input-guarded sum and one (possibly unary) output-guarded

sum. To show that there is no good and independency-preserving encoding, we show that

the mixed sums of our counterexample P
⋆ cannot be translated into a separate choice

term that satisfies all the conditions of a good encoding. In particular, we derive a conflict

on the type of the required sums, i.e. one such sum in the translated term has to be input-

as well as output-guarded which is impossible. In order to formulate this problem, let P+
sep

be the subset of Psep-terms where the outermost operator is separate choice. Moreover
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if T1, T2 ∈ P+
sep then let t(T1) = t(T2) iff the sums T1 and T2 have the same type, i.e. if

they are either both input-guarded or both output-guarded.

In our counterexample P⋆ there are five different ways to perform a (first) step, whereby

steps on neighbouring channels—as for instance a and b—are in conflict. Because of

operational correspondence, the translation J P
⋆ K has to be able to simulate all these

source term steps. Moreover, because of success sensitiveness, the conflicts between the

source term steps have to be translated into conflicts between the respective simulations.

Here we use Observation 3.22 to switch between different variants of our counterexample

P
⋆ and thus choose for all pairs of neighbouring source term steps a variant of P⋆ that

constitutes the conflict between these steps by a difference in the reachability of success.

Lemma 3.23. Any good encoding J · K from πmix into πsep has to translate the con-

flicts in P
⋆ into conflicts of some corresponding simulations, i.e. for all pairs (i, j) ∈

{(a, b) , (b, c) , (c, d) , (d, e) , (e, a)} there are T, Ti, Tj ∈ Psep and there areM ij ,M ij
i ,M ij

j ∈

P+
sep such that

J P⋆ K Z=⇒ T 7−→ Ti Z=⇒≍ J P ′
i K, (Si)

J P⋆ K Z=⇒ T 7−→ Tj Z=⇒≍ J P ′
j K, (Sj)

t
(
M ij

)
6= t

(

M ij
i

)

= t
(

M ij
j

)

, the step ti : T 7−→ Ti reduces M
ij and M ij

i , and the step

tj : T 7−→ Tj reduces M ij and M ij
j .

Proof. The source term P
⋆ has the five different executions P

⋆ 7−→ P ′
i with i ∈

{ a, . . . , e }. Each execution consists of a single step, which we denote by si. By op-

erational completeness (Definition 3.6), all these source term steps have to be simulated

modulo ≍, i.e. for all i ∈ { a, . . . , e } there is a simulation Si : J P
⋆ K Z=⇒≍ J P ′

i K.

Because all executions of P
⋆ are finite and because of divergence reflection (Defini-

tion 3.7), all executions of J P
⋆ K are finite. Let us fix i and j such that (i, j) ∈

{ (a, b) , (b, c) , (c, d) , (d, e) , (e, a) }. Thus there are T1, T2 ∈ Psep such that Si : J P⋆ K Z=⇒

T1 ≍ J P ′
i K and Sj : J P⋆ K Z=⇒ T2 ≍ J P ′

j K.

Consider the case Pj = Xand Pi = Pk = 0 for all k ∈ ({ a, . . . , e } \ { j }). Then P ′
j ⇓X!

and P ′
i 6⇓X. Because of success sensitiveness (Definition 3.9) and Lemma 3.13, P ′

i 6⇓X

implies J P ′
i K 6⇓X and P ′

j ⇓X! implies J P ′
j K ⇓X!. Since ≍ respects success (Definition 3.10)

and by Lemma 3.12, we have J P ′
i K ≍ T1 6≍ T2 ≍ J P ′

j K, T1 6⇓X, and T2 ⇓X!. Thus

J P
⋆ K ⇓X and there are T, Ti ∈ Psep such that Si : J P

⋆ K Z=⇒ T 7−→ Ti Z=⇒ T1 ≍ J P ′
i K

with ti : T 7−→ Ti, T ⇓X, and Ti 6⇓X. By Lemma 3.15, then there is Tj ∈ Psep such that

tj : T 7−→ Tj , Tj ⇓X, and ti and tj are in conflict.

Because T ∈ Psep, the step ti reduces exactly one input- and one output-guarded sum.

Since ti and tj are in conflict, tj either reduces the same input-guarded or the same

output-guarded or the same two sums. If these steps reduce the same two sums, choose

M ij as one of these sums and let M ij
i = M ij

j be the respective other sum. Else (if ti and

tj reduce three different sums), let M ij be the sum that is reduced in both steps, let M ij
i

be the respective other sum that is reduced in ti, and M ij
j be the respective other sum

that is reduced in tj . In both cases we have t
(
M ij

)
6= t

(

M ij
i

)

= t
(

M ij
j

)

.
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Since T1 6⇓X and T2 ⇓X!, the conflict between Si and Sj is such that all possible

ways to reach success have to be eliminated before T1 is reached and all possible ways

that do not lead to success have to be eliminated before T2 is reached. Since J X K ⇓X!

and J 0 K 6⇓X and by compositionality, the continuations J Pi K and J Pj K cannot be

unguarded before the conflict between ti and tj is ruled out, i.e. J Pi K and J Pj K are

guarded in T . Of course before the first such conflict between two simulations is ruled

out all continuations J Px K with x ∈ { a, . . . , e } are guarded. Thus, by Observation 3.22,

for each (i, j) ∈ { (a, b) , (b, c) , (c, d) , (d, e) , (e, a) } and all Pa, . . . , Pe ∈ { 0,X} there are

T, Ti, Tj ∈ Psep and M ij ,M ij
i ,M ij

j ∈ P+
sep as required.

Adding the preservation of causal independence to the requirements of a good encoding

we derive a contradiction on the requirements for the sums M ij ,M ij
i ,M ij

j ∈ P+
sep: Every

maximal execution of our counterexample P
⋆ contains two causally independent steps.

Thus for any good and independence-preserving translation of P⋆ every maximal execu-

tion contains two causally independent simulations of source term steps, each containing

a step that is in conflict with the simulations of the respective neighbouring source term

steps. Hence each maximal execution of J P
⋆ K has two causally independent steps each

reducing some M ij and some M ij
i or M ij

j . The side conditions on these sums that result

from the conflicts as described in Lemma 3.23 and from the causal independence of these

steps leads to a contradiction with the constraints on the type t(·) of these sums.

Theorem 3.24. No good encoding J · K from πmix into πsep preserves causal indepen-

dence.

Proof. Assume the contrary, i.e. assume that there is a good and independence-pre-

serving encoding J · K from πmix into πsep.

P
⋆ is such that each maximal execution of P

⋆ consists of exactly two steps that

are causally independent as for example P
⋆ 7−→ P ′

a 7−→ Pa | Pc |
(
d+ e.Pe

)
. By

Definition 3.21, an encoding J · K that preserves causal independence ensures that

the simulation of each such execution contains two causally independent sequences of

steps representing the respective simulations of the two source term steps, i.e. each

maximal execution of J P
⋆ K contains two causally independent simulations of two

causally independent source term steps. These two sequences can be interleaved, but

by Lemma 3.23 they cannot be empty and within each maximal execution each pair

of steps of different simulations is causally independent. By Lemma 3.23 there are

Mab,Mab
a ,Mab

b , . . . ,M ea,M ea
e ,M ea

a ∈ P+
sep such that

∀ { i, j } ∈ { { a, b } , { b, c } , { c, d } , { d, e } , { e, a } } .

t
(
M ij

)
6= t

(

M ij
i

)

= t
(

M ij
j

) (1)

and each maximal execution reduces the sums corresponding to two causally independent

simulations. Note that we consider labelled variants of terms here and that for all i, j ∈

{ a, b, c, d, e } the reduction of M ij and M ij
i (or M ij and M ij

j ) belong to the simulation

of the source term step si (or sj) on channel i (or j), because these steps mark which

source term step is simulated.

Hence each maximal execution of J P⋆ K has (at least) two causally independent steps
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such that one step reducesM ij ,M ij
x and the other step reducesMkl,Mkl

y , where i, j, k, l ∈

{ a, . . . , e }, x ∈ { i, j }, and y ∈ { k, l }. For example in the simulation of P⋆ 7−→7−→ Pa |

Pc |
(
d+ e.Pe

)
we have

(
M ij ,M ij

x

)
∈

{ (
Mab,Mab

a

)
, (M ea,M ea

a )
}
and

(
Mkl,Mkl

y

)
∈

{ (
M bc,M bc

c

)
,
(
M cd,M cd

c

) }
, or vice versa. By Lemma 3.19, there are executions such

that these two steps are consecutive and, by Lemma 3.18, in such executions these two

steps can occur in either order. Thus there are T, T1, T
′
1, T2 ∈ Psep such that J P

⋆ K Z=⇒

T 7−→ T1 7−→ T2 and J P⋆ K Z=⇒ T 7−→ T ′
1 7−→ T2, where T 7−→ T1 and T ′

1 7−→ T2 reduce

M ij and M ij
x , and T 7−→ T ′

1 and T1 7−→ T2 reduce Mkl and Mkl
y . Thus M ij ,M ij

x ,Mkl,

and Mkl
y are unguarded in T . By Definition 3.4, the step T 7−→ T1 cannot consume

the unguarded instance of the labelled term Mkl and unguard another instance with

the same labels. Hence Mkl /∈
{
M ij ,M ij

x

}
. Analogously, Mkl

y /∈
{
M ij ,M ij

x

}
and

M ij ,M ij
x /∈

{
Mkl,Mkl

y

}
.

∀(i, j), (k, l) ∈ { (a, b), (b, c), (c, d), (d, e), (e, a) } . ∀x ∈ { i, j } .

∀y ∈ { k, l } . { x, y } ∈ { {a, c} , {a, d} , {b, d} , {b, e} , {c, e} } =⇒

Mkl,Mkl
y /∈

{
M ij ,M ij

x

}
∧M ij ,M ij

x /∈
{
Mkl,Mkl

y

}
(2)

Next let i, j, k ∈ { a, . . . , e } be such that the steps on i and k are causally indepen-

dent in P
⋆ but the step on j is in conflict with both the step on i as well as the step

on k, i.e. (i, j, k) ∈ { (a, b, c) , (b, c, d) , (c, d, e) , (d, e, a) , (e, a, b) }. Let si, sj , sk denote

the respective steps on channel i, j, k. By Lemma 3.18, Lemma 3.19, and Lemma 3.23,

there are (at least) two maximal executions containing the causally independent simu-

lations of si and sk and all such executions are in conflict with all executions con-

taining the simulation of sj . Thus there are T, Ti,1, Ti,2, Tj,1, Tj,2, Tk,1, Tk,2 ∈ Psep and

M ij ,M ij
i ,M ij

j ,M jk,M jk
j ,M jk

k ∈ P+
sep such that

J P⋆ K Z=⇒ T 7−→ Ti,1 7−→ Tk,1 Z=⇒ 67−→,

J P⋆ K Z=⇒ T 7−→ Tj,1 Z=⇒,

J P⋆ K Z=⇒ T 7−→ Tk,2 7−→ Ti,2 Z=⇒ 67−→,

J P⋆ K Z=⇒ T 7−→ Tj,2 Z=⇒,

t
(
M ij

)
6= t

(

M ij
i

)

= t
(

M ij
j

)

, t
(
M jk

)
6= t

(

M jk
j

)

= t
(

M jk
k

)

, T 7−→ Ti,1 and Tk,2 7−→ Ti,2

reduce M ij and M ij
i , T 7−→ Tj,1 reduces M ij and M ij

j , T 7−→ Tk,2 and Ti,1 7−→ Tk,1

reduce M jk and M jk
k , and T 7−→ Tj,2 reduces M jk and M jk

j . Then T has an unguarded

instance of M jk
j but Ti,1 cannot have such an unguarded instance, because the conflict

to the simulation of sj is already ruled out in T 7−→ Ti,1. Hence T 7−→ Ti,1 removes M jk
j .

Because T 7−→ Ti,1 reduces only M ij and M ij
i , we conclude that M jk

j ∈
{

M ij ,M ij
i

}

.

Similarly, M ij
j ∈

{

M jk,M jk
k

}

.

∀ (i, j, k) ∈ { (a, b, c) , (b, c, d) , (c, d, e) , (d, e, a) , (e, a, b) } .

M jk
j ∈

{

M ij ,M ij
i

}

∧M ij
j ∈

{

M jk,M jk
k

} (3)
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From the Conditions 1 and 3 we obtain:

∀ (i, j, k) ∈ { (a, b, c) , (b, c, d) , (c, d, e) , (d, e, a) , (e, a, b) } .
(

M jk
j = M ij ∧M ij

j = M jk
)

∨
(

M jk
j = M ij

i ∧M ij
j = M jk

k

) (4)

Consider (i, j, k, l) ∈ { (a, b, c, d) , (b, c, d, e) , (c, d, e, a) , (d, e, a, b) , (e, a, b, c) }.

Then, by applying Condition 4 twice, we have M jk
j = M ij ∧ M ij

j = M jk or M jk
j =

M ij
i ∧M ij

j = M jk
k as well as Mkl

k = M jk ∧M jk
k = Mkl or Mkl

k = M jk
j ∧M jk

k = Mkl
l . Of

the resulting four cases only one remains, because the other cases lead to M ij = Mkl
k ,

M ij
j = Mkl, or M ij

i = Mkl
k and thus violate Condition 2.

∀ (i, j, k, l) ∈ { (a, b, c, d) , (b, c, d, e) , (c, d, e, a) , (d, e, a, b) , (e, a, b, c) } .

M jk
j = M ij ∧M ij

j = M jk = Mkl
k ∧M jk

k = Mkl (5)

From Condition 5 we derive, by checking all possible assignments for i, j, k, l, that Mab =

M ea
a = M bc

b , M bc = Mab
b = M cd

c , M cd = M bc
c = Mde

d , Mde = M cd
d = M ea

e , and

M ea = Mde
e = Mab

a .¶¶ But then, by Condition 1, we derive the contradiction Mab
b =

M bc ∧ Mab
a = M ea =⇒ t

(
M bc

)
= t(M ea) but M cd

c = M bc ∧ Mde = M cd
d ∧ Mde

e =

M ea =⇒ t
(
M bc

)
6= t(M ea).

4. Summary

In Section 2 we proved that it is in general impossible to find for a finite, 1-safe net

a distributed, completed pomset trace equivalent, finite, 1-safe net. Then in Section 3

we proved that no good encoding from the synchronous π-calculus with mixed choice

into the asynchronous π-calculus can preserves causal independence. In summary, both

within Petri nets and within the π-calculus it is in general impossible to translate a syn-

chronous system into a purely asynchronous one without introducing additional causal

dependencies. We believe that the existence of these results in two fundamentally dif-

ferent concurrency formalisms reveals a general phenomenon. The similarities between

the results as outlined below, in particular in the structure of the counterexamples used,

point to a general problem when trying to implement synchronisation or distributed

choices under preservation of the causal structure.

4.1. Comparison of the two Results

Let us have a look at the different criteria that are used to show the two separation results.

In Petri nets we require a good implementation to be distributed, finite, complete pomset

trace equivalent, and thereby also divergence-free. An encoding between two π-calculi

is considered good if it satisfies compositionality, operational correspondence, success

sensitiveness, and divergence reflection.

Note that the first criterion on the π-calculus side, i.e. the structural criterion com-

positionality, basically ensures that the encoding is of practical use. In the case of a

¶¶ Note that in our counterexample P
⋆ we can indeed choose a+b.Pb = M

ab, b+c.Pc = M
bc, c+d.Pd =

M
cd, d+ e.Pe = M

de, and e+ a.Pa = M
ea such that theses equations hold.
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non-compositional encoding, it is often already hard to write the encoding down and

even more difficult to implement it. Multi-level encodings, where each level represents

a compositional encoding, are an exception. However, in that case it is possible to im-

plement a global coordinator like the one in the centralised solution of the Petri net

implementation in Figure 3 (compare also to the discussion of multi-level encodings in

Gorla (2010)). So, compositionality rules out encodings that solve all conflicts by cen-

tralisation. Similarly, in the case of Petri nets, it is required that the implementation

net is distributed and transitions firing in the source net can also fire in parallel in the

implementation. Note that the second requirement is ensured by the requirement that

the original net and its implementation are completed pomset trace equivalent. We also

observe that compositionality rules out the case that the encoding function simply trans-

lates every possible execution into a sequential process, which is the only reason to forbid

infinite implementations in the Petri net setting.

Operational correspondence in combination with success sensitiveness ensures that, in

the case of the π-calculus, the source term and its translation have the same abstract be-

haviour. Note that these criteria—similar to completed pomset trace equivalence—also

forbid the introduction of (local) deadlocks not present in the source. By these two

criteria, the source and the target term are at least equated by some kind of testing

equivalence. The equivalence ≍, which is assumed on the target language, influences

how strict the abstract behaviours of the source and the target terms have to coincide.

Therefore, we do not presume any requirements on ≍ except that it is a reduction bisim-

ulation. Similarly, in the case of Petri nets, with completed pomset trace equivalence we

choose one of the weakest behavioural equivalences which is sensitive to local deadlocks,

divergence, causal independence, and amount of parallelism.

The most obvious difference between the two separation results is presumably the dif-

ferent expressivity of the source languages. Petri nets are, contrary to the synchronous

π-calculus, not Turing-complete. This makes the similarities between both results even

more surprising. It turns out that in both results the critical structure—if represented as

a Petri net‖‖—is a more complex variant of the pure M of Figure 1. In both cases, the

counterexample refers to a situation in the synchronous setting in which there are two

causally independent Petri net transitions or π-calculus steps that are both in conflict

to a third one. To mimic this behaviour, the Petri net implementation as well as the π-

calculus encoding have to introduce a causal dependence that is not present in the source.

In (Peters 2012) a good encoding from πmix into πa (with matching) is presented and it is

proved that this encoding satisfies the criteria of Section 3.2. Thus our separation result

indeed results from the additional criterion on the preservation of causal independence.

Note that also the notions of causality used to derive these two results are comparable,

because the two conditions on causally independent steps—(1) two consecutive causally

independent steps can be swapped and (2) for each execution with two causally indepen-

dent steps there is some execution in which these steps are consecutive—used to derive

the result for the π-calculus hold similarly for transitions in Petri nets.

‖‖ In (Peters, Nestmann & Goltz 2013) we show that the counterexample of Section 3.4 corresponds to
a Petri net that looks like a star and consists of three overlapping pure M’s.
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However, apart from these apparent similarities, the relation between the two results

leaves us with a number of open problems and gives possible directions of future research.

To begin with, the requirements imposed on Petri net implementations and π-calculus

encodings take rather different forms. Note that the π-calculus setting seems to utilise

stronger requirements on the structure of an encoding function, while the Petri net setting

requires a stronger connection between source and target by means of an equivalence.

One possibility to obtain the same preconditions for both proofs, would be to augment

Petri nets with a notion of success and then to apply the criteria of Gorla to the Petri

net setting. Similarly, we could examine what kind of equivalence between source and

target terms is induced by the combination of the five criteria of Gorla and compare this

equivalence with completed pomset trace equivalence. However, we believe that both

modifications would not change the main statement of our proofs. Also, in contrast to

the π-calculus, the Petri nets considered here are not Turing-complete. So is it possible

to derive the same result considering a Turing-complete formalism as for instance Petri

nets with inhibitor arcs? We hope to answer some of these questions in future work.

4.2. Related Work

In Petri nets: A review of existing literature in related areas of Petri nets research can

be found in Glabbeek et al. (2008), nonetheless we wish to refer the reader explicitly to

Hopkins (1991), where instead of requiring the equivalence between specification and im-

plementation to preserve parallelism, more structural resemblance of the implementation

to the specification is required.

A paper not covered by Glabbeek et al. (2008) is Badouel, Caillaud & Darondeau

(2002), where an algorithm for the automated synthesis of distributed implementations of

protocols is presented. The notion of distributed Petri nets employed therein differs from

ours by not requiring formally that no parallelism may occur on the same location. The

authors however finally generate a finite automaton for each location, again serialising

all actions on a single location. In contrast to the present paper and similar to Hopkins

(1991), the authors start with a user-supplied map from events to locations, and answer

the concrete problem of whether that specific distribution is realisable or not instead of

requiring the maximal possible parallelism to be realised.

The present paper adds another patch to the emerging map of the separation plane

between those equivalences from the spectrum of behavioural equivalences which allow

asynchronous Petri net implementation in general and those which do not. Glabbeek

et al. (2008) show that Petri nets cannot in general be implemented up to step readiness

equivalence, thereby giving an upper bound for distributability along the branching-time

dimension. The present paper provided an upper bound on the dimension of causality. We

did not formally proof that this bound is tight, and one might imagine that a behavioural

equivalence closer to the notion of dependency markings exists. However, we were unable

to find an equivalence which is sensitive to the local deadlock problem outlined in Figure 4

and is not based on processes. The implementation by Schicke (2009) can serve as a

lower bound on both dimensions. It would be interesting to answer the implementability
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question for systems which feature real-valued time, thereby enabling timeout detection

and simultaneous action without co-locality.

The question up to which behavioural equivalence general Petri nets are implementable

can also be reversed into the question what properties or substructures of a Petri net

make it unimplementable. One problematic structure for causal equivalences, identified in

this paper, is the net of Figure 2, possibly with a more elaborate route from a and c back

to the marking enabling all three transitions. We did not prove that no fundamentally

different problematic structures exists, but we conjecture that this is indeed the case.

In the π-calculus: As already mentioned in the introduction of Section 3 the expres-

sive power of mixed choice in the π-calculus is already analysed in (Palamidessi 2003,

Nestmann 2000, Gorla 2010, Peters & Nestmann 2010, Peters & Nestmann 2012, Peters

2012, Peters et al. 2013), but to the best of our knowledge this is the first investiga-

tion of encodings from πmix into πsep or πa with respect to the preservation of causal

independencies.

In (Peters et al. 2013, Peters 2012) the same counterexample and a similar proof

technique as in Section 3.4 is used to show that no good encoding between πmix and

(πsep or) πa preserves distributability. Moreover it is shown how easily the proofs there

can be adapted to show similar separation results between other calculi. Similarly we can

adapt the above proofs to show that there is no good and causality preserving encoding

from πa into the Join Calculus—using the counterexample that transferred into a Petri

net has the shape of a pure M of (Peters et al. 2013)—or how a similar result can be

proved for action-guarded variants of CSP.

4.3. Conclusion

In comparison, although we consider two fundamentally different formalisms of concur-

rency and apply quite different requirements and notions of a good encoding or imple-

mentation, we obtain surprisingly similar results. In both settings we have shown that

it is not always possible to implement synchronous interactions within a purely asyn-

chronous setting without the introduction of additional causal dependencies. Hence, this

connection between choices, synchronous interactions and causal dependencies is very

likely not an artefact of the representation of concurrent systems in either Petri nets or

the π-calculus, but rather a general phenomenon.
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